Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies Treatment (PDQ®)–Health Professional Version
Therapy-Related AML/Myelodysplastic Syndromes
Pathogenesis
The development of acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) after treatment with ionizing radiation or chemotherapy, particularly alkylating agents and topoisomerase inhibitors, is termed therapy-related AML (t-AML) or therapy-related MDS (t-MDS). In addition to genotoxic exposures, genetic predisposition susceptibilities (such as polymorphisms in drug detoxification and DNA repair pathway components) may contribute to the occurrence of secondary AML/MDS.[1-4]
The risk of t-AML/t-MDS is regimen-dependent and often related to the cumulative doses of chemotherapy agents received and the dose and field of radiation administered.[5] Regimens previously used that employed high cumulative doses of either epipodophyllotoxins (e.g., etoposide or teniposide) or alkylating agents (e.g., mechlorethamine, melphalan, busulfan, and cyclophosphamide) induced excessively high rates of t-AML/t-MDS that exceeded 10% in some cases.[5,6] However, most current chemotherapy regimens that are used to treat childhood cancers have a cumulative incidence of t-AML/t-MDS no greater than 1% to 2%.
t-AML/t-MDS resulting from epipodophyllotoxins and other topoisomerase II inhibitors (e.g., anthracyclines) usually occur within 2 years of exposure and are commonly associated with chromosome 11q23 abnormalities,[7] although other subtypes of AML (e.g., acute promyelocytic leukemia) have been reported.[8,9] t-AML that occurs after exposure to alkylating agents or ionizing radiation often presents 5 to 7 years later and is commonly associated with monosomies or deletions of chromosomes 5 and 7.[1,7]
Treatment of Therapy-Related AML/MDS
Treatment options for therapy-related AML/MDS include the following:
- HSCT.
The goal of treatment is to achieve an initial complete remission (CR) using AML-directed regimens and then, usually, to proceed directly to hematopoietic stem cell transplantation (HSCT) with the best available donor. However, treatment is challenging because of the following:[10]
- Increased rates of adverse cytogenetics and subsequent failure to obtain remission with chemotherapy.
- Comorbidities or limitations related to chemotherapy for the previous malignancy.
Accordingly, CR rates and overall survival (OS) rates are usually lower for patients with t-AML compared with patients with de novo AML.[10-12] Also, survival for pediatric patients with t-MDS is worse than survival for pediatric patients with MDS not related to previous therapy.[13]
Patients with t-MDS-refractory anemia usually have not needed induction chemotherapy before transplant; the role of induction therapy before transplant is controversial in patients with refractory anemia with excess blasts-1.
Only a few reports describe the outcome of children undergoing HSCT for t-AML.
Evidence (HSCT for t-AML/t-MDS):
- One study described the outcomes of 27 children with t-AML who received related and unrelated donor HSCT.[14]
- Three-year OS rates were 18.5% ± 7.5% and event-free survival (EFS) rates were 18.7% ± 7.5%.
- Poor survival was mainly the result of very high transplant-related mortality (59.6% ± 8.4%).
- Another study reported a second retrospective single-center experience of 14 patients with t-AML/t-MDS who were transplanted between 1975 and 2007.[11]
- Survival was 29%, but in this review, only 63% of patients diagnosed with t-AML/t-MDS underwent HSCT.
- A multicenter study (CCG-2891) examined outcomes of 24 children with t-AML/t-MDS compared with other children enrolled on the study with de novo AML (n = 898) or MDS (n = 62). Children with t-AML/t-MDS were older and low-risk cytogenetics rarely occurred.[15]
- Although rates of achieving CR and OS at 3 years were worse in the t-AML/t-MDS group (CR, 50% vs. 72%; P = .016; OS, 26% vs. 47%; P = .007), survival was similar (OS, 45% vs. 53%; P = .87) if patients achieved a CR.
- The importance of remission to survival in these patients is further illustrated by another single-center report of 21 children who underwent HSCT for t-AML/t-MDS between 1994 and 2009. Of the 21 children, 12 had t-AML (11 in CR at the time of transplant), seven had refractory anemia (for whom induction was not done), and two had refractory anemia with excess blasts.[16]
- Survival of the entire cohort was 61%; patients in remission or with refractory anemia had a disease-free survival of 66%, and for the three patients with more than 5% blasts at the time of HSCT, survival was 0% (P = .015).
Because t-AML is rare in children, it is not known whether the significant decrease in transplant-related mortality after unrelated donor HSCT noted over the past several years will translate to improved survival in this population. Patients should be carefully assessed for pre-HSCT morbidities caused by earlier therapies, and treatment approaches should be adapted to give adequate intensity while minimizing transplant-related mortality.
References
- Leone G, Fianchi L, Voso MT: Therapy-related myeloid neoplasms. Curr Opin Oncol 23 (6): 672-80, 2011. [PUBMED Abstract]
- Bolufer P, Collado M, Barragan E, et al.: Profile of polymorphisms of drug-metabolising enzymes and the risk of therapy-related leukaemia. Br J Haematol 136 (4): 590-6, 2007. [PUBMED Abstract]
- Ezoe S: Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. Int J Environ Res Public Health 9 (7): 2444-53, 2012. [PUBMED Abstract]
- Ding Y, Sun CL, Li L, et al.: Genetic susceptibility to therapy-related leukemia after Hodgkin lymphoma or non-Hodgkin lymphoma: role of drug metabolism, apoptosis and DNA repair. Blood Cancer J 2 (3): e58, 2012. [PUBMED Abstract]
- Leone G, Mele L, Pulsoni A, et al.: The incidence of secondary leukemias. Haematologica 84 (10): 937-45, 1999. [PUBMED Abstract]
- Pui CH, Ribeiro RC, Hancock ML, et al.: Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med 325 (24): 1682-7, 1991. [PUBMED Abstract]
- Andersen MK, Johansson B, Larsen SO, et al.: Chromosomal abnormalities in secondary MDS and AML. Relationship to drugs and radiation with specific emphasis on the balanced rearrangements. Haematologica 83 (6): 483-8, 1998. [PUBMED Abstract]
- Ogami A, Morimoto A, Hibi S, et al.: Secondary acute promyelocytic leukemia following chemotherapy for non-Hodgkin's lymphoma in a child. J Pediatr Hematol Oncol 26 (7): 427-30, 2004. [PUBMED Abstract]
- Okamoto T, Okada M, Wakae T, et al.: Secondary acute promyelocytic leukemia in a patient with non-Hodgkin's lymphoma treated with VP-16 and MST-16. Int J Hematol 75 (1): 107-8, 2002. [PUBMED Abstract]
- Larson RA: Etiology and management of therapy-related myeloid leukemia. Hematology Am Soc Hematol Educ Program : 453-9, 2007. [PUBMED Abstract]
- Aguilera DG, Vaklavas C, Tsimberidou AM, et al.: Pediatric therapy-related myelodysplastic syndrome/acute myeloid leukemia: the MD Anderson Cancer Center experience. J Pediatr Hematol Oncol 31 (11): 803-11, 2009. [PUBMED Abstract]
- Yokoyama H, Mori S, Kobayashi Y, et al.: Hematopoietic stem cell transplantation for therapy-related myelodysplastic syndrome and acute leukemia: a single-center analysis of 47 patients. Int J Hematol 92 (2): 334-41, 2010. [PUBMED Abstract]
- Xavier AC, Kutny M, Costa LJ: Incidence and outcomes of paediatric myelodysplastic syndrome in the United States. Br J Haematol 180 (6): 898-901, 2018. [PUBMED Abstract]
- Woodard P, Barfield R, Hale G, et al.: Outcome of hematopoietic stem cell transplantation for pediatric patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome. Pediatr Blood Cancer 47 (7): 931-5, 2006. [PUBMED Abstract]
- Barnard DR, Lange B, Alonzo TA, et al.: Acute myeloid leukemia and myelodysplastic syndrome in children treated for cancer: comparison with primary presentation. Blood 100 (2): 427-34, 2002. [PUBMED Abstract]
- Kobos R, Steinherz PG, Kernan NA, et al.: Allogeneic hematopoietic stem cell transplantation for pediatric patients with treatment-related myelodysplastic syndrome or acute myelogenous leukemia. Biol Blood Marrow Transplant 18 (3): 473-80, 2012. [PUBMED Abstract]
No hay comentarios:
Publicar un comentario