Los nuevos descriptores ofrecen mejores resultados | 12 AGO 18
Nuevos nombres para describir mejor los colores
Para definir los colores de una imagen se suele utilizar un sistema de once nombres bien conocidos, como blanco, rojo, verde y azul, pero un equipo de científicos chinos y europeos propone usar otros 28 adicionales, como borgoña, salmón, lavanda, ciruela, tan y verde oliva
Los 11 colores básicos (negro, azul, marrón, gris, verde, naranja, rosa, púrpura, rojo, blanco y amarillo) y los 28 adicionales (turquesa, verde oliva, verde menta, borgoña, lavanda, magenta, salmón, cian, beige, rosado, verde oscuro, verde oliva, lila, amarillo pálido, fucsia, mostaza, ocre, trullo, malva, púrpura oscuro, verde lima, verde claro, ciruela, azul claro, melocotón, violeta, tan y granate. / Lu Yu et al.
Pero ahora, investigadores del Centro de Visión por Computador (CVC) de la Universidad Autónoma de Barcelona y otras instituciones internacionales presentan en la revista Machine Vision and Applications un nuevo sistema en el que, además de los colores básicos, se añaden otros 28 complementarios. En conjunto describen mucho mejor las distintas coloraciones, según los autores.
La nueva clasificación de nombres de colores, además de los 11 básicos, añade otros 28 complementariosLos 28 nombres de los colores adicionales son turquesa, verde oliva, verde menta, borgoña, lavanda, magenta, salmón, cian, beige, rosado, verde oscuro, verde oliva, lila, amarillo pálido, fucsia, mostaza, ocre, trullo, malva, púrpura oscuro, verde lima, verde claro, ciruela, azul claro, melocotón, violeta, tan y granate.
Entrenamiento con imágenes de Google
El sistema se ha entrenado con una base de datos de 250 imágenes extraídas de Google para cada uno de los 39 colores (11+28), aplicando modelos estadísticos para estimar valores de probabilidad. De esta forma un algoritmo ha aprendido a diferenciar, de forma automática y con precisión, cada color; y la nueva clasificación se ha aplicado con éxito en distintos experimentos.
Estos descriptores superan a los existentes en tareas como el seguimiento visual y la reidentificación de personas“Estos descriptores superan a los existentes en tareas como el seguimiento visual de personas, la reidentificación de individuos ‘fichados’ anteriormente y en la clasificación de imágenes”, destaca Lu Yu, investigadora del CVC y coautora del trabajo.
En concreto, el nuevo sistema de colores ha probado su eficacia para identificar píxeles y crear máscaras en fotografías de coches, zapatos, vestidos y piezas de cerámica. También para describir las tonalidades de colecciones de flores incluidas en una base de datos con más de 8.000 imágenes.
Los nuevos descriptores también ofrecen mejores resultados para realizar el seguimiento de rostros y figuras de personas mediante cámaras, aunque las condiciones de iluminación no sean buenas, los fotogramas tengan baja resolución o se produzcan desenfoques y oclusiones por el movimiento del sujeto.
Representaciones de tres colores para seguir objetos en situaciones complejas, como cambios de iluminación, ocultaciones temporales, difuminados o rotaciones de plano. / Lu Yu et al. / Machine Vision and Applications
Por último, los investigadores también realizaron un experimento psicofísico con voluntarios, que tuvieron que decidir si el color y nombre que veían en una pantalla de ordenador coincidían. Sus respuestas también confirmaron que para describir mejor los colores preferían el sistema de 11+28 nombres en lugar de solo los 11 básicos.
Diferencias de género y culturales
Aunque el estudio no haya entrado en estos detalles, Yu también recuerda que existen diferencias sutiles en la apreciación de las coloraciones dependiendo del género del observador: “No sabemos si por temas sociales o biológicos, las mujeres parecen distinguir las tonalidades de color con mayor facilidad que los hombres”. La amplia gama de esmaltes de uñas es un ejemplo.
“Y también he apreciado diferencias culturales –añade la experta– a la hora de designar algunos colores, como el rosa (pink), que para los europeos está más cerca del fucsia (fuchsia), mientras que para los chinos se aproxima más al rosado (rose)”. Futuras investigaciones podrían profundizar en la influencia del género y la cultura en la clasificación de los colores.
Referencia bibliográfica:
Lu Yu, Lichao Zhang, Joost van de Weijer, Fahad Shahbaz Khan,Yongmei Cheng, C. Alejandro Parraga. “Beyond Eleven Color Names for Image Understanding”. Machine Vision and Applications 29 (2): 361–373, 2018.
No hay comentarios:
Publicar un comentario