jueves, 2 de octubre de 2014

El azúcar parece prolongar la vida en la vejez

El azúcar parece prolongar la vida en la vejez



Univadis - un servicio de MSD



El azúcar parece prolongar la vida en la vejez

  • APA
logo medical-news

En general, se considera que la reducción de la cantidad de calorías y de azúcar son medidas adecuadas para la prevención de las enfermedades y la prolongación de la vida. De acuerdo con un estudio alemán, esto únicamente parece cumplirse en los jóvenes y adultos de mediana edad y, de hecho, es posible que ocurra lo contrario en la vejez. De acuerdo con «Nature Communications», los médicos hallaron que un aumento de la ingesta de glucosa prolongaba la esperanza de vida de los animales en algunos modelos en ratones.
Se sabe que la esperanza de vida se correlaciona con la longitud de los telómeros. En su estudio sobre ratones, los científicos del Leibniz Institut für Altersforschungt - Fritz Lipmann-Institut e.V. (FLI) (Jena, Alemana) demostraron que, con la edad, el acortamiento de los telómeros aumenta la demanda de energía de las células y los tejidos, con lo que también se aumenta la demanda de glucosa.
Los investigadores descubrieron que los ratones de más edad con telómeros cortos que recibían una alimentación rica en glucosa mostraban un 20 por ciento de aumento de la esperanza de vida global. Según explicó el coautor Bernhard Boehm, de la Universität Ulm: «Estos resultados resultaron muy sorprendentes y pueden proporcionar una explicación del cambio en la correlación del peso corporal y la esperanza de vida en los mayores en comparación con las personas de mediana edad». De hecho, el aumento del peso corporal en las personas de mediana edad se relaciona con una menor esperanza de vida y un aumento del riesgo de aparición de enfermedades mientras que, en los años posteriores, esta relación es precisamente la contraria.
El autor principal de la publicación, Lenhard Rudolph, indica: «Ahora debe comprobarse si los resultados de nuestro estudio también se cumplen en los seres humanos. En ese caso, es posible que tengamos que cambiar la composición de nuestra alimentación en las edades avanzadas para mantener el funcionamiento de nuestros tejidos y células, los cuales muestran un aumento de la demanda de restitución de glucosa para la producción de energía». Ya se han puesto en marcha los primeros estudios piloto.

Glucose substitution prolongs maintenance of energy homeostasis and lifespan of telomere dysfunctional mice

Nature Communications
 
5,
 
Article number:
 
4924
 
doi:10.1038/ncomms5924
Received
 
Accepted
 
Published
 

Abstract

DNA damage and telomere dysfunction shorten organismal lifespan. Here we show that oral ​glucose administration at advanced age increases health and lifespan of telomere dysfunctional mice. The study reveals that energy consumption increases in telomere dysfunctional cells resulting in enhanced ​glucose metabolism both in glycolysis and in the tricarboxylic acid cycle at organismal level. In ageing telomere dysfunctional mice, normal diet provides insufficient amounts of ​glucosethus leading to impaired energy homeostasis, catabolism, suppression of ​IGF-1/​mTOR signalling, suppression of mitochondrial biogenesis and tissue atrophy. A ​glucose-enriched diet reverts these defects by activating glycolysis, mitochondrial biogenesis and oxidative ​glucose metabolism. The beneficial effects of ​glucose substitution on mitochondrial function and ​glucose metabolism are blocked by ​mTOR inhibition but mimicked by ​IGF-1 application. Together, these results provide the first experimental evidence that telomere dysfunction enhances the requirement of ​glucosesubstitution for the maintenance of energy homeostasis and ​IGF-1/​mTOR-dependent mitochondrial biogenesis in ageing tissues.

At a glance

Figures

View all figures
left
  1. Glucose feeding extends lifespan of telomere dysfunctional mice.
    Figure 1
  2. Glucose supplementation rescues thymus atrophy and IGF-1 and glucose levels of telomere dysfunctional mice.
    Figure 2
  3. Telomere dysfunctional mice show elevated glucose depletion rates and glucose supplementation rescues catabolic metabolism in this context.
    Figure 3
  4. Glucose supplementation improves energy homeostasis of telomere dysfunctional mice by increasing glycolysis and oxidative glucose metabolism.
    Figure 4
  5. Glucose supplementation rescues mitochondrial mass and increases oxygen consumption and ATP levels in G3 mTerc−/− mice.
    Figure 5
  6. DNA damage signalling impairs mitochondrial biogenesis and function in ageing G3 mTerc−/− mice.
    Figure 6
  7. Suppression of IGF-1 and mTOR contributes to impairments in mitochondrial biogenesis and function in ageing G3 mTerc−/− mice.
    Figure 7
  8. Model of telomere dysfunction-induced metabolic changes that accelerate tissue ageing.
    Figure 8
right

References

  1. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesisCell 97527538 (1999).
  2. Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formationNat. Genet. 3999105(2007).
  3. Schaetzlein, S. et al. Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional miceCell 130863877 (2007).
  4. Siegl-Cachedenier, I.Munoz, P.Flores, J. M.Klatt, P. & Blasco, M. A. Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres.Genes Dev. 2122342247 (2007).
  5. Flores, I. & Blasco, M. A. A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeresPLoS ONE 4e4934 (2009).
  6. Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise.Nature 470359365 (2011).
  7. Passos, J. F. et al. Feedback between p21 and reactive oxygen production is necessary for cell senescenceMol. Syst. Biol. 6347 (2010).
  8. Kaplon, J. et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescenceNature 498109112 (2013).
  9. Dorr, J. R. et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapyNature 501412415 (2013).
  10. Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axisNature 44410381043 (2006).
  11. Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complexNature 450736740 (2007).
  12. Bonawitz, N. D.Chatenay-Lapointe, M.Pan, Y. & Shadel, G. S. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expressionCell Metab. 5265277 (2007).
  13. Vellai, T. et al. Genetics: influence of TOR kinase on lifespan in C. elegansNature 426,620 (2003).
  14. Schieke, S. M. et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacityJ. Biol. Chem. 281,2764327652 (2006).
  15. Scarpulla, R. C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory networkBiochim. Biophys. Acta 181312691278 (2011).
  16. Blagosklonny, M. V. Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans)Cell Cycle 9683688 (2010).
  17. Brown-Borg, H. M.Borg, K. E.Meliska, C. J. & Bartke, A. Dwarf mice and the ageing processNature 38433 (1996).
  18. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous miceNature 460392395 (2009).
  19. Echave, P. et al. Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesisJ. Cell Sci. 12245164525 (2009).
  20. Song, Z. et al. Alterations of the systemic environment are the primary cause of impaired B and T lymphopoiesis in telomere-dysfunctional miceBlood 11514811489 (2010).
  21. Kuhlow, D. et al. Telomerase deficiency impairs glucose metabolism and insulin secretion.Aging (Albany NY) 2650658 (2010).
  22. Inagaki, T. et al. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21Cell Metab. 87783 (2008).
  23. Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpointMol. Cell. 18283293 (2005).
  24. Feng, J.Bussiere, F. & Hekimi, S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegansDev. Cell 1633644 (2001).
  25. Van Voorhies, W. A. & Ward, S. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rateProc. Natl Acad. Sci. USA 96,1139911403 (1999).
  26. Gu, Y.Wang, C. & Cohen, A. Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosisFEBS Lett. 577357360 (2004).
  27. Begus-Nahrmann, Y. et al. p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional miceNat. Genet. 4111381143 (2009).
  28. Wullschleger, S.Loewith, R. & Hall, M. N. TOR signaling in growth and metabolismCell124471484 (2006).
  29. Jurk, D. et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in miceNat. Commun. 24172 (2014).
  30. Jiang, H.Ju, Z. & Rudolph, K. L. Telomere shortening and ageingZ. Gerontol. Geriatr. 40,314324 (2007).
  31. Marino, G. et al. Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis functionProc. Natl Acad. Sci. USA 1071626816273 (2010).
  32. Garinis, G. A. et al. Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevityNat. Cell Biol. 11604615 (2009).
  33. Forster, M. J.Morris, P. & Sohal, R. S. Genotype and age influence the effect of caloric intake on mortality in miceFASEB J. 17690692 (2003).
  34. Liao, C. Y.Rikke, B. A.Johnson, T. E.Diaz, V. & Nelson, J. F. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shorteningAging Cell 99295 (2010).
  35. Mattison, J. A. et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA studyNature 489318321 (2012).
  36. Rube, C. E. et al. Accumulation of DNA damage in hematopoietic stem and progenitor cells during human agingPLoS ONE 6e17487 (2011).
  37. Trounce, I.Byrne, E. & Marzuki, S. Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageingLancet 1637639 (1989).
  38. Rudman, D. et al. Effects of human growth hormone in men over 60 years oldNew Engl. J. Med. 32316 (1990).
  39. Persson, M. D.Brismar, K. E.Katzarski, K. S.Nordenstrom, J. & Cederholm, T. E.Nutritional status using mini nutritional assessment and subjective global assessment predict mortality in geriatric patientsJ. Am. Geriatr. Soc. 5019962002 (2002).
  40. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNACell 912534 (1997).
  41. Lo, S.Russell, J. C. & Taylor, A. W. Determination of glycogen in small tissue samplesJ. Appl. Physiol. 28234236 (1970).
  42. Diaz, F.Thomas, C. K.Garcia, S.Hernandez, D. & Moraes, C. T. Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiencyHum. Mol. Genet. 1427372748 (2005).
  43. Hiller, K. et al. MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysisAnal Chem. 8134293439 (2009).
  44. Wegner, A.Sapcariu, S. C.Weindl, D. & Hiller, K. Isotope cluster-based compound matching in gas chromatography/mass spectrometry for non-targeted metabolomicsAnal Chem 8540304037 (2013).
  45. Wegner, A. et al. Fragment formula calculator (FFC): determination of chemical formulas for fragment ions in mass spectrometric dataAnal Chem. 8622212228 (2014).
  46. Kelleher, J. K. Estimating gluconeogenesis with [U-13C]glucose: molecular condensation requires a molecular approachAm. J. Physiol. 277E395E400 (1999).

Author information

  1. These authors contributed equally to this work.

    • Pavlos Missios, 
    • Yuan Zhou, 
    • Luis Miguel Guachalla & 
    • Guido von Figura
  2. Present address: Director of Metabolic Medicine NTU Singapore and Imperial College London.

    • Bernhard O. Böhm

Affiliations

  1. Cooperation Group of the Leibniz Institute for Age Research—Fritz-Lipmann-Institute (FLI) Jena with the University of Ulm, 89081 Ulm, Germany

    • Pavlos Missios,
    •  
    • Yuan Zhou,
    •  
    • Luis Miguel Guachalla,
    •  
    • Guido von Figura,
    •  
    • Sundaram Reddy Chakkarappan &
    •  
    • Zhangfa Song
  2. Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, Esch-Belval L-4362, Luxembourg

    • Andre Wegner,
    •  
    • Tina Binz &
    •  
    • Karsten Hiller
  3. Leibniz Institute for Age Research—Fritz Lipmann Institute (FLI), Beutenbergstr 11, 07745 Jena, Germany

    • Anne Gompf,
    •  
    • Götz Hartleben,
    •  
    • Martin D. Burkhalter,
    •  
    • Cagatay Günes &
    •  
    • K. Lenhard Rudolph
  4. Institute for Genetics, Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Street 47A, 50674 Cologne, Germany

    • Veronika Wulff &
    •  
    • Tina Wenz
  5. Institute of Epidemiology, Ingolstädter Landstrasse 1, 85764 Munich/Neuherberg, Germany

    • Rui Wang Sattler &
    •  
    • Thomas Illig
  6. German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany

    • Susanne Klaus
  7. Department of Internal Medicine I, University of Ulm, 89081 Ulm, Germany

    • Bernhard O. Böhm

Contributions

P.M., Y.Z., L.M.G. and G.v.F. contributed to equal parts. P.M., Y.Z., L.M.G. and G.v.F. performed most of the experiments, were involved together with K.L.R. in design and analysis of the experiments, as well as in preparation of the manuscript. A.W., T.B. and K.H. performed ​glucosetracing experiments. S.R.C. was involved in the ​IGF-1 injection experiment. A.G. was involved in the survival experiments. G.H., M.D.B. and C.G. performed Seahorse experiments. V.W. and T.W. did investigations on mitochondria. R.W.S. and T.I. performed the metabolomics experiments. Z.S. was involved in thymus experiments. S.K. did bomb calorimetry and stool analysis. B.O.B. was involved in ​IGF-1 experiments as well as preparation of the manuscript. K.L.R. conceived the study.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to: 

Supplementary information

PDF files


  1. Supplementary Information (6,905 KB)
    Supplementary Figures 1-5 and Supplementary Tables 1-2

No hay comentarios:

Publicar un comentario