lunes, 20 de agosto de 2018

Astrocitomas infantiles (PDQ®)—Versión para profesionales de salud - National Cancer Institute

Astrocitomas infantiles (PDQ®)—Versión para profesionales de salud - National Cancer Institute

Instituto Nacional Del Cáncer

Tratamiento de los astrocitomas infantiles (PDQ®)–Versión para profesionales de salud



SECCIONES

Información general sobre los astrocitomas infantiles

Los tumores encefálicos primarios, incluso los astrocitomas, son un grupo diverso de enfermedades que, en conjunto, constituyen los tumores sólidos más frecuentes en la niñez. Los tumores encefálicos se clasifican según sus características histológicas, pero la ubicación del tumor y su grado de diseminación son factores importantes que afectan el tratamiento y el pronóstico. Para el diagnóstico y la clasificación de los tumores, se usan cada vez más los análisis inmunohistoquímicos, los hallazgos citogenéticos y genético-moleculares, y las mediciones de la actividad mitótica.
Se cree que los gliomas surgen a partir de los precursores de los gliocitos, que se encuentran en el encéfalo y la médula espinal. Los gliomas se denominan de acuerdo con el subtipo clinicopatológico e histológico. Por ejemplo, los astrocitomas surgen a partir de los astrocitos; los tumores oligodendrogliales a partir de los oligodendrocitos; y los gliomas mixtos a partir de una combinación de oligodendrocitos, astrocitos y ependimocitos. El astrocitoma es el tipo de glioma que se diagnostica con mayor frecuencia en los niños.
Según la clasificación de tumores encefálicos de la Organización Mundial de la Salud (OMS), los gliomas se subclasifican en tumores de grado bajo (grados I y II) o alto (grados III y IV). Los niños con tumores de grado bajo tienen un pronóstico relativamente favorable; en particular, cuando los tumores se pueden resecar por completo. En general, los niños con tumores de grado alto tienen un pronóstico menos favorable, pero depende del subtipo.
Los sumarios de tratamiento del PDQ sobre los tumores encefálicos infantiles se organizan principalmente de acuerdo con la clasificación de tumores del sistema nervioso establecida por la OMS.[1,2] Para obtener una descripción completa de la clasificación de los tumores del sistema nervioso y un enlace al sumario de tratamiento correspondiente a cada tipo de tumor encefálico, consultar el sumario del PDQ Descripción del tratamiento de tumores de encéfalo y de médula espinal infantiles.

Características anatómicas

Los astrocitomas infantiles se presentan en cualquier sitio del sistema nervioso central (SNC) (consultar la Figura). En el Cuadro 3 se muestra el sitio más común de cada tipo de tumor en el SNC.
AMPLIARDibujo del interior del encéfalo que muestra la región supratentorial (la porción superior del encéfalo) y la fosa posterior o región infratentorial (la porción inferior y posterior del encéfalo). La región supratentorial contiene el cerebro, un ventrículo lateral, el tercer ventrículo, el plexo coroideo, el hipotálamo, la glándula pineal, la hipófisis y un nervio óptico. La fosa posterior o región infratentorial contiene el cerebelo, la tienda del cerebelo, el cuarto ventrículo y el tronco encefálico (protuberancia y  bulbo raquídeo). También se muestra el techo del mesencéfalo  y la médula espinal.
Anatomía interna del encéfalo; se observa el cerebro, el cerebelo, el tronco encefálico, la médula espinal, el nervio óptico, el hipotálamo y otras partes del encéfalo.

Características clínicas

Los síntomas de presentación de los astrocitomas infantiles dependen de los siguientes aspectos:
  • Ubicación en el SNC.
  • Tamaño del tumor.
  • Tasa de crecimiento tumoral.
  • Edad cronológica y de desarrollo del niño.
En los lactantes y niños pequeños, los astrocitomas de grado bajo que surgen en el hipotálamo en ocasiones producen síndrome diencefálico, que se manifiesta por un retraso en el desarrollo de un niño demacrado, aparentemente eufórico. Es posible que estos niños no presenten otras manifestaciones neurológicas, pero pueden tener macrocefalia, letargo intermitente y deficiencia visual.[3]

Evaluación diagnóstica

La evaluación diagnóstica del astrocitoma se limita, con frecuencia, a imágenes por resonancia magnética (IRM) del encéfalo y de la columna vertebral. A veces la resonancia magnética de la columna vertebral se realiza al comienzo con la IRM del encéfalo para excluir las metástasis del eje encefalomedular.
Las tomografías computarizadas (TC) y las tomografías con emisión de positrones (TEP) no se suelen emplear para definir las características de presuntos gliomas. En niños con esta enfermedad, tampoco es común el uso de la punción lumbar para examinar el líquido cefalorraquídeo en busca de células tumorales circulantes.

Clasificación clinicopatológica de los astrocitomas infantiles y otros tumores de origen glial

La clasificación patológica de los tumores encefálicos infantiles es un área de especialización en desarrollo. Es muy recomendable que un neuropatólogo con conocimientos especializados en esta área realice un examen del tejido de diagnóstico.
Los tipos tumorales se definen según el posible origen del gliocito:
  • Astrocitomas (astrocitos).
  • Tumores oligodendrogliales (oligodendrocitos).
  • Gliomas mixtos (los tipos celulares de origen incluyen oligodendrocitos, astrocitos y ependimocitos).
  • Tumores neuronales y gliales mixtos.

Grado histológico de los astrocitomas según la Organización Mundial de la Salud

De acuerdo con la tipificación histológica de los tumores del sistema nervioso central (SNC) de la Organización Mundial de la Salud (OMS), los astrocitomas infantiles y otros tumores de origen glial se clasifican según el subtipo clinicopatológico e histológico, y se les asigna un grado (grado I a IV).[1]
Con frecuencia, se hace referencia a los grados histológicos de la OMS como gliomas de grado bajo o de grado alto (consultar el Cuadro 1).
Cuadro 1. Grado histológico y clasificación correspondiente de los tumores del sistema nervioso central según la Organización Mundial de la Salud
Grado histológico según la OMSClasificación del grado
IGrado bajo
IIGrado bajo
IIIGrado alto
IVGrado alto
En los criterios de la OMS de 2016 se comenzaron a emplear datos moleculares para diagnosticar algunos tumores porque en las pruebas cumulativas publicadas se fundamenta que, en general, las alteraciones biológicas comunes inician la actividad tumoral (consultar el Cuadro 2). En los gliomas del SNC, esto se manifiesta en los cambios de la clasificación de los gliomas difusos, que se agrupan por las mutaciones oncoiniciadoras y no por las similitudes en las características histopatológicas.[2] Hay dos gliomas difusos que ya no se consideran entidades separadas: el astrocitoma fibrilar y el astrocitoma protoplásmico. También se incluye el glioblastoma epitelioide como una nueva variante provisoria, que es un subtipo de glioblastoma con IDH natural.
Cuadro 2. Clasificación y grado histológico de 2016 de los tumores astrocíticos según la Organización Mundial de la Saluda
TipoGrado histológico según la OMS
aAdaptado de Louis et al.[2]
bEn 2007, la OMS determinó que la variante pilomixoide del astrocitoma pilocítico puede ser una variante agresiva y más propensa a diseminarse, y se reclasificó como tumor de grado II.[1,2,4] En 2016, la OMS sugirió no clasificar la variante pilomixoide hasta que se definiera el comportamiento de la variante en otros estudios.[2]
Tumores astrocíticos difusos: 
—Astrocitoma difuso, con mutación en IDHII
—Astrocitoma anaplásico, con mutación en IDHIII
—Glioblastoma, con IDH naturalIV
—Glioblastoma, con mutación en IDHIV
—Glioma difuso de la línea media, con mutación H3K27MIV
Otros tumores astrocíticos: 
—Astrocitoma pilocíticoI
—Astrocitoma pilomixoideGrado inciertob
—Xantoastrocitoma pleomórficoII
—Xantoastrocitoma pleomórfico anaplásicoIII
—Astrocitoma subependimario de células gigantesI
Otros gliomas: 
—Glioma angiocéntricoI
—Glioma coroideo del tercer ventrículoII
—AstroblastomaGrado inciertob

Localización en el sistema nervioso central

Los astrocitomas infantiles y otros tumores de origen glial pueden surgir en cualquier sitio del sistema nervioso central (SNC), aunque cada tipo tumoral tiende a tener localizaciones comunes (consultar el Cuadro 3).
Cuadro 3. Localizaciones comunes de los astrocitomas infantiles y otros tumores de origen glial en el sistema nervioso central
Tipo tumoralLocalización común en el SNC
Astrocitoma pilocíticoNervio óptico, quiasma óptico o hipotálamo, tálamo y ganglios basales, hemisferios cerebrales, cerebelo y tronco encefálico, y médula espinal (poco frecuente)
Xantoastrocitoma pleomórficoUbicación superficial en el cerebro (preferentemente en el lóbulo temporal)
Astrocitoma difusoCerebro (lóbulos frontal y temporal), tronco encefálico, médula espinal, nervio óptico, quiasma óptico, vía óptica, hipotálamo y tálamo
Astrocitoma anaplásico, glioblastomaCerebro; en ocasiones, cerebelo, tronco encefálico y médula espinal
Más de 80 % de los astrocitomas ubicados en el cerebelo son de grado bajo (pilocíticos de grado I) y, con frecuencia, quísticos; la mayoría de los restantes son astrocitomas difusos de grado II. Los astrocitomas malignos en el cerebelo son poco frecuentes.[1,2] La presencia de ciertas características histológicas (por ejemplo, tasa de MIB-1, anaplasia) se han usado de forma retrospectiva para pronosticar la supervivencia sin complicaciones en los astrocitomas pilocíticos que surgen en el cerebelo u otros sitios.[5-7]
Los astrocitomas que surgen en el tronco encefálico son de grado alto o de grado bajo; la frecuencia de cada tipo depende, en gran medida, de la ubicación del tumor en el tronco encefálico.[8,9] Los tumores que no comprometen la protuberancia son, en su gran mayoría, gliomas de grado bajo (por ejemplo, gliomas tectales del mesencéfalo), mientras que los tumores ubicados de forma exclusiva en la protuberancia sin componentes exofíticos son, en gran medida, gliomas de grado alto (por ejemplo, gliomas pontinos intrínsecos difusos con el genotipo con mutación H3K27M).[8,9] (Para obtener más información, consultar el sumario del PDQ Tratamiento del glioma de tronco encefálico infantil).
Los astrocitomas de grado alto son, a menudo, localmente invasivos y extensos, y tienden a presentarse por encima de la tienda, en el cerebro.[10,11] En ocasiones, hay diseminación por vía del espacio subaracnoideo. Se han presentado metástasis por fuera del SNC, pero son bastante infrecuentes hasta que se presenten recaídas locales múltiples.
La gliomatosis cerebral ya no se considera una entidad diferenciada, sino un crecimiento que se halla en algunos gliomas difusos. No obstante, la descripción engloba el compromiso generalizado de los hemisferios cerebrales que suele presentarse con diseminación hacia la parte inferior y afecta el tronco encefálico, el cerebelo o la médula espinal.[1] En escasas ocasiones, surge en el cerebelo y se disemina rostralmente.[12] Las células neoplásicas son, con mayor frecuencia, astrocitos pero, en algunos casos, son oligodendroglía. En ocasiones responden al tratamiento inicial, pero en general tienen un pronóstico adverso.[13]

Neurofibromatosis de tipo 1

Los niños con neurofibromatosis de tipo 1 (NF-1) son más propensos a presentar astrocitomas de grado I y de grado II de la OMS en la vía visual (óptica); alrededor de 20 % de todos los pacientes de NF-1 presentará un glioma en la vía óptica. En estos pacientes, el tumor quizás se encuentre en los exámenes de detección cuando el niño está asintomático o presenta deficiencias visuales o neurológicas aparentemente estables.
Con frecuencia, no se obtiene la confirmación patológica en los pacientes asintomáticos; cuando se realizan las biopsias, se ha encontrado que estos tumores son predominantemente astrocitomas pilocíticos (grado I) en lugar de astrocitomas difusos de grado alto.[2,4,14-16]
En general, no es necesario tratar los tumores que se hallan de forma casual al realizar una neuroimagen de vigilancia. Es posible que las lesiones sintomáticas o con progresión observada en las imágenes radiográficas necesiten tratamiento.[17]

Esclerosis tuberosa

Los pacientes con esclerosis tuberosa tienen predisposición a presentar gliomas de grado bajo, en especial, astrocitomas subependimarios de células gigantes.[18] Las mutaciones en TSC1 o TSC2 causan alteraciones de las vías que repercuten en la vía del blanco de la rapamicina en los mamíferos (mTOR), que conlleva a un aumento de proliferación. Se ha observado que los astrocitomas subependimarios de células gigantes son sensibles a abordajes dirigidos con inhibición de la vía del mTOR.[19]

Alteraciones genómicas

Gliomas de grado bajo

Las alteraciones genómicas que comprometen la activación de BRAF y de la vía ERK/MAPK son muy comunes en los casos esporádicos de astrocitoma pilocítico, un tipo de glioma de grado bajo.
La activación de BRAF en el astrocitoma pilocítico sucede, con mayor frecuencia, mediante la fusión génica BRAF-KIAA1549, que genera una proteína de fusión que carece del dominio regulador de BRAF.[20-24] Esta fusión se observa en la mayoría de los astrocitomas pilocíticos infratentoriales y de la línea media, pero es menos común en los tumores supratentoriales (hemisféricos).[20,21,25-30] Con menor frecuencia, se observan otras alteraciones genómicas en los astrocitomas pilocíticos que pueden activar la vía ERK/MAPK (por ejemplo, otras fusiones génicas de BRAF, reordenamientos de RAF1, mutaciones en RASy mutaciones puntuales BRAF V600E).[21,23,24,31]
La presencia de la fusión BRAF-KIAA1549 pronosticó un desenlace clínico más favorable (supervivencia sin progresión [SSP] y supervivencia general [SG]) en un informe en el que se describieron niños con gliomas de grado bajo parcialmente resecados.[29] Sin embargo, otros factores, como la deleción de CDKN2A, la ganancia de cromosoma 7 completo y la ubicación tumoral pueden modificar el efecto de la mutación en BRAF sobre el desenlace.[32]; [33][Grado de comprobación: 3iiiDiii] Es infrecuente que un glioma infantil de grado bajo con la fusión BRAF-KIAA1549 evolucione hasta convertirse en un glioma de grado alto.[34]
La activación de BRAF por medio de la fusión BRAF-KIAA1549 también se describió en otros gliomas infantiles de grado bajo (por ejemplo, astrocitoma pilomixoide).[28,29]
En ocasiones, se observan mutaciones puntuales BRAF V600E en los astrocitomas pilocíticos; las mutaciones también se observan en los gliomas de grado bajo infantiles que no son pilocíticos, como el ganglioglioma, el ganglioglioma desmoplásico infantil y en aproximadamente dos tercios de los xantoastrocitomas pleomórficos.[35-37] En los estudios se observó lo siguiente:
  • En una serie retrospectiva con más de 400 niños con gliomas de grado bajo, 17 % de los tumores albergaban una mutación BRAF V600E. La SSP a 10 años fue de 27 % para los casos con mutación BRAF V600E en comparación con 60 % de los casos que no albergaban esa mutación. Los factores adicionales que se relacionaron con este pronóstico precario fueron la resección subtotal y la deleción CDKN2A.[38] Incluso en los pacientes sometidos a resección macroscópica total, se informó recidiva en un tercio de estos casos; esto indica que los tumores con BRAF V600E tienen un fenotipo más invasor que las otras variantes de glioma de grado bajo.
  • En un análisis similar, la SSP a 5 años de los niños con astrocitomas diencefálicos de grado bajo con la mutación BRAF V600E fue de 22 %, en comparación con la de los niños con BRAF natural que fue de 52 %.[39][Grado de comprobación: 3iiiDiii]
  • La frecuencia de la mutación BRAF V600E fue mucho más alta en los gliomas infantiles de grado bajo que se transformaron en gliomas de grado alto (8 de 18 casos) que la frecuencia de la mutación en los casos sin transformación (10 de 167 casos).[34]
Se ha observado que gran parte de los gliomas angiocéntricos albergan fusiones MYB-QKI, una presunta mutación oncoiniciadora para esta clase de gliomas relativamente infrecuentes.[40]
Al igual que el defecto de la activación de la vía ERK/MAPK de la neurofibromatosis tipo 1 (NF1), las alteraciones genómicas que producen activación de BRAF son poco frecuentes en el astrocitoma pilocítico relacionado con la NF1.[27]
En los astrocitomas pilocíticos no cerebelosos, también se han identificado mutaciones activadoras en FGFR1PTPN11 y en genes de fusión de NTRK2.[41] En los astrocitomas difusos infantiles de grado II, las alteraciones notificadas con más frecuencia (hasta en 53 % de los tumores) fueron los reordenamientos en la familia de factores de transcripción MYB.[42,43]
La mayoría de los niños con esclerosis tuberosa tiene una mutación en uno de los dos genes de esclerosis tuberosa (TSC1/harmatina o TSC2/tuberina). Cualquiera de estas mutaciones produce una activación del complejo 1 del blanco de la rapamicina en los mamíferos (mTOR). Estos niños corren el riesgo de presentar astrocitomas subependimarios de células gigantes, tuberosidades corticales y nódulos subependimarios. En vista de que la oncoiniciación de los astrocitomas subependimarios de células gigantes se produce por activación del mTOR, los inhibidores del mTOR son fármacos activos capaces de inducir la regresión tumoral en los niños con estos tumores.[44]

Gliomas de grado alto

Desde el punto de vista biológico, los gliomas infantiles de grado alto, en particular el glioblastoma multiforme, son diferentes de los que se presentan en adultos.[45-48]
A partir de patrones epigenéticos (metilación del ADN), los gliomas infantiles de grado bajo se pueden separar en subgrupos distintivos; estos subgrupos exhiben ganancias o pérdidas peculiares del número de copias de cromosomas y mutaciones génicas.[49-51] Los subtipos más distintivos de gliomas infantiles de grado alto son aquellos con mutaciones recurrentes en aminoácidos específicos en genes de histonas; en conjunto, representan cerca de la mitad de los gliomas de grado alto infantiles. Los siguientes subgrupos de gliomas infantiles de grado alto se identificaron según los patrones de metilación de su ADN y exhiben características moleculares y clínicas distintivas:[51]:
  1. Mutación K27: H3.3 (H3F3A) y H3.1 (HIST1H3B y, con poca frecuencia, HIST1H3C).Los casos de mutación en la Histona K27 predominan durante la mitad de la niñez (mediana de edad, alrededor de 10 años), están casi de forma exclusiva en la línea media (tálamo, tronco encefálico y médula espinal) y tienen un pronóstico muy precario. En la clasificación de 2016 de la Organización Mundial de la Salud (OMS), estos cánceres se agrupan en una sola entidad —glioma difuso de la línea media, con mutación H3 K27M— aunque hay distinciones clínicas y biológicas entre los casos con mutaciones H3.3 y H3.1, como se describe más abajo.[2] Estos casos se diagnostican mediante pruebas inmunohistoquímicas para identificar la presencia de K27M.
    • Los casos con H3.3K27M se presentan por toda la línea media y la protuberancia, y representan cerca de 60 % de los casos en estos sitios; por lo común, se presentan entre los 5 y 10 años de edad.[51] El pronóstico de los pacientes con H3.3K27M es particularmente precario, con una mediana de supervivencia de menos de 1 año; la supervivencia a 2 años es de menos de 5 %.[51]
    • Los casos con H3.1K27M son cerca de cinco veces menos frecuentes que los casos de H3.3K27M. Surgen sobre todo en la protuberancia y se presentan a una edad más temprana que los otros casos de H3.3K27M (mediana de edad, 5 vs. 6–10 años). Estos casos tienen un pronóstico algo más favorable que los casos de H3.3K27M (mediana de supervivencia, 15 vs. 11 meses). Las mutaciones en ACVR1, que también se observan en la afección genética fibrodisplasia osificante progresiva, se presentan en una proporción alta de casos de H3.1K27M.[51-53]
    • Con poca frecuencia, también se identifican mutaciones en K27M en casos con H3.2 (HIST2H3C).[51]
  2. Mutación G34: H3.3 (H3F3A). El subtipo H3.3G34 se presenta en niños más grandes y adultos jóvenes (mediana de edad, 14–18 años) y surge de forma exclusiva en la corteza cerebral.[49,50] Los casos de H3.3G34 suelen tener mutaciones en TP53 y ATRX, y exhiben hipometilación generalizada en todo el genoma. Los pacientes con mutaciones en H3F3A tienen un riesgo alto de fracaso del tratamiento, pero el pronóstico no es tan precario como el de los pacientes con mutaciones de Histona 3.1 o 3.3 en K27M.[50] La metilación de metilguanina metiltransferasa (MGMT) se observa en alrededor de dos tercios de los casos y, aparte del subtipo con mutación en IDH1(ver más abajo), el subtipo H3.3G34 es el único subtipo de glioma infantil de grado alto que exhibe tasas de metilación MGMT que exceden 20 %.[51]
  3. Mutación en IDH1. Los casos con mutación en IDH1 representan un pequeño porcentaje de gliomas infantiles de grado alto (cerca de 5 %); los pacientes de glioma infantil de grado alto cuyos tumores tienen mutaciones en IDH1 son casi todos adolescentes de más edad (mediana de edad en una población pediátrica, 16 años) con tumores hemisféricos.[51] Los casos con mutación en IDH1 a menudo exhiben mutaciones en TP53, metilación del promotor de MGMT y fenotipo metilador de islas CpG en gliomas (G-CIMP).[49,50] Los pacientes pediátricos con mutaciones en IDH1tienen un pronóstico más favorable que otros pacientes de glioblastoma multiforme infantil.[51]
  4. Tumor similar al xantoastrocitoma pleomórfico (XAP). Cerca de 10 % de los gliomas infantiles de grado alto tienen patrones de metilación del ADN que son similares a los de XAP.[50] Los casos similares al XAP suelen exhibir mutaciones BRAFV600E y tienen un desenlace relativamente favorable (alrededor de 50 % de supervivencia a 5 años).[51]
  5. Tumor similar al glioma de grado bajo. Un pequeño subconjunto de tumores encefálicos infantiles con apariencia histológica de gliomas de grado alto exhibe patrones de metilación del ADN similares a los gliomas de grado bajo.[50,51] Estos casos se observan sobre todo en pacientes jóvenes (mediana de edad, 4 años); 10 de 16 lactantes diagnosticados con un glioblastoma multiforme estaban en el grupo similar al glioma de grado bajo.[51] El pronóstico de estos pacientes es mucho más favorable que el de aquellos con otros subtipos de glioma infantil de grado alto. Más abajo se presenta un análisis adicional sobre el glioblastoma multiforme en lactantes.
Los pacientes de glioma infantil de grado alto con glioblastoma multiforme cuyos tumores carecen tanto de mutaciones de histona como de mutaciones en IDH1 representan cerca de 40 % de los casos de glioblastoma multiforme infantil.[51,54] Este es un grupo heterogéneo con tasas más altas de amplificaciones génicas que otros subtipos de glioma infantil de grado alto. Los genes amplificados con más frecuencia son PDGFRAEGFRCCND/CDK y MYC/MYCN;[49,50] las tasas de metilación del promotor MGMT son bajas en este grupo.[54] En un informe, se dividió este grupo en tres subgrupos. El subtipo caracterizado por tasas altas de amplificación de MYCN tuvo el pronóstico más precario; por su parte, el grupo caracterizado por mutaciones en el promotor de TERT y amplificación de EGFR tuvo el pronóstico más favorable. El tercer grupo se caracterizó por la amplificación de PDGFRA.[54]
En comparación con los tumores de niños de mayor edad y adultos, los lactantes y los niños pequeños con diagnóstico de glioblastoma multiforme presentan tumores con características moleculares inconfundibles. La aplicación del análisis de metilación del ADN a los tumores de glioblastoma multiforme infantil permitió identificar a un grupo de pacientes (alrededor de 7 % de pacientes pediátricos con diagnóstico histológico de glioblastoma multiforme) que presentaban tumores con características moleculares congruentes con los gliomas de grado bajo. La mediana de edad para este grupo de pacientes fue de 1 año, y 8 de 10 lactantes presentaron un perfil de tumor similar al glioma de grado bajo.[50] El subtipo similar a un glioma de grado bajo tuvo un pronóstico favorable (supervivencia general a 3 años, alrededor de 90 %).[50,51] Se observaron mutaciones BRAF V600E en 4 de 13 tumores similares a un glioma de grado bajo y en 3 de 15 tumores de pacientes de 3 años y menos.[50] En un segundo informe se dio cuenta de la investigación de las pérdidas y ganancias del número de copias génicas y el estado de mutación en determinados genes de los tumores de glioblastoma multiforme en niños menores de 36 meses.[55] Las tasas considerables de alteraciones moleculares que se observaron en los niños de mayor edad (por ejemplo, K27M, pérdida de CDKN2A, amplificación de PDGFRA y mutaciones en el promotor de TERT) fueron poco frecuentes en estos niños pequeños y, en algunos casos, se observaron anomalías novedosas (por ejemplo, pérdida del SNORD en el cromosoma 14q32).
El glioma infantil de grado alto secundario (glioma de grado alto precedido por un glioma de grado bajo) es poco común (2,9 % en un estudio de 886 pacientes). Ningún glioma infantil de grado bajo con la fusión BRAF-KIAA1549 se transformó en glioma de grado alto, mientras que los gliomas de grado bajo con mutaciones BRAF V600E se relacionaron con un aumento del riesgo de transformación. En 7 de 18 pacientes (alrededor de 40 %) con glioma de grado alto secundario se observaron mutaciones BRAF V600E y en 8 de 14 casos (57 %) se presentaron alteraciones en CDKN2A.[34]

Pronóstico

Astrocitomas de grado bajo

Los astrocitomas de grado bajo (grado I [pilocítico] y grado II) tienen un pronóstico relativamente favorable, en particular, para las lesiones de grado I delimitadas cuando es posible realizar una escisión completa.[10,11,56-60] Cuando se presenta diseminación tumoral es, a menudo, por extensión contigua; es posible la diseminación a otros sitios del SNC, pero es poco frecuente.[61,62] Aunque la metástasis no es frecuente, en ocasiones los tumores son de origen multifocal; en particular, cuando se relacionan con la NF-1.
Las siguientes son las características pronósticas desfavorables de los astrocitomas infantiles de grado bajo:[63-66]
  • Edad temprana.[66]
  • Características histológicas difusas, en especial con mutación en IDH.
  • Incapacidad para realizar una resección completa.
  • Síndrome diencefálico.[66]
  • Hipertensión intracraneal en el cuadro clínico inicial.
  • Metástasis. Cuando ocurren metástasis, estas se vinculan con un desenlace precario a largo plazo.[67] Sin embargo, es cada vez más evidente que el pronóstico depende en gran parte de características moleculares específicas integradas con la clasificación patológica estándar.
En los pacientes con astrocitoma pilocítico, un índice elevado del marcador MIB-1, un marcador de actividad de proliferación celular, se relaciona con una SSP más corta.[7] Una fusión BRAF-KIAA, que se encuentra en los tumores pilocíticos, confiere un mejor desenlace clínico.[29]
Los niños con tumores aislados del nervio óptico tienen un mejor pronóstico que aquellos con lesiones que comprometen el quiasma o que se extienden por la vía óptica.[68-71]; [72][Grado de comprobación: 3iiC] Los niños con NF-1 también tienen un mejor pronóstico, en particular, cuando el tumor se encuentra en pacientes asintomáticos en el momento del examen de detección.[68,73]

Astrocitomas de grado alto

Si bien los astrocitomas de grado alto tienen por lo general un pronóstico adverso en los niños más pequeños, aquellos con astrocitomas anaplásicos en los que es posible realizar una resección macroscópica completa tienen mejor pronóstico,[58,74,75] al igual que en el caso de niños con tumores sin la mutación H3K27M.
Los subtipos moleculares del glioblastoma multiforme infantil poseen significación pronóstica.[50] Los pacientes que tienen tumores con mutaciones en la histona de K27Mpresentan el peor pronóstico, con tasas de supervivencia a 3 años inferiores a 5 %. Los pacientes que tienen tumores con mutaciones en IDH1 parecen presentar el mejor pronóstico de los casos de glioblastoma multiforme infantil, mientras que los pacientes con mutaciones en la histona de G34 y los pacientes que no tienen mutaciones en histonas ni en IDH1 presentan un pronóstico intermedio (SG a los 3 años de alrededor de 30 %). En un análisis multivariante con factores moleculares y clínicos, se observaron amplificaciones génicas y mutaciones en K27M que se vincularon con un pronóstico más precario; mientras que la presencia de las mutaciones en IDH1 se vinculó con un pronóstico más favorable.[50]
Bibliografía
  1. Louis DN, Ohgaki H, Wiestler OD, et al., eds.: WHO Classification of Tumours of the Central Nervous System. 4th ed. Lyon, France: IARC Press, 2007.
  2. Louis DN, Perry A, Reifenberger G, et al.: The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131 (6): 803-20, 2016. [PUBMED Abstract]
  3. Kilday JP, Bartels U, Huang A, et al.: Favorable survival and metabolic outcome for children with diencephalic syndrome using a radiation-sparing approach. J Neurooncol 116 (1): 195-204, 2014. [PUBMED Abstract]
  4. Komotar RJ, Burger PC, Carson BS, et al.: Pilocytic and pilomyxoid hypothalamic/chiasmatic astrocytomas. Neurosurgery 54 (1): 72-9; discussion 79-80, 2004. [PUBMED Abstract]
  5. Tibbetts KM, Emnett RJ, Gao F, et al.: Histopathologic predictors of pilocytic astrocytoma event-free survival. Acta Neuropathol 117 (6): 657-65, 2009. [PUBMED Abstract]
  6. Rodriguez FJ, Scheithauer BW, Burger PC, et al.: Anaplasia in pilocytic astrocytoma predicts aggressive behavior. Am J Surg Pathol 34 (2): 147-60, 2010. [PUBMED Abstract]
  7. Margraf LR, Gargan L, Butt Y, et al.: Proliferative and metabolic markers in incompletely excised pediatric pilocytic astrocytomas--an assessment of 3 new variables in predicting clinical outcome. Neuro Oncol 13 (7): 767-74, 2011. [PUBMED Abstract]
  8. Fried I, Hawkins C, Scheinemann K, et al.: Favorable outcome with conservative treatment for children with low grade brainstem tumors. Pediatr Blood Cancer 58 (4): 556-60, 2012. [PUBMED Abstract]
  9. Fisher PG, Breiter SN, Carson BS, et al.: A clinicopathologic reappraisal of brain stem tumor classification. Identification of pilocystic astrocytoma and fibrillary astrocytoma as distinct entities. Cancer 89 (7): 1569-76, 2000. [PUBMED Abstract]
  10. Pollack IF: Brain tumors in children. N Engl J Med 331 (22): 1500-7, 1994. [PUBMED Abstract]
  11. Pfister S, Witt O: Pediatric gliomas. Recent Results Cancer Res 171: 67-81, 2009. [PUBMED Abstract]
  12. Rorke-Adams LB, Portnoy H: Long-term survival of an infant with gliomatosis cerebelli. J Neurosurg Pediatr 2 (5): 346-50, 2008. [PUBMED Abstract]
  13. Armstrong GT, Phillips PC, Rorke-Adams LB, et al.: Gliomatosis cerebri: 20 years of experience at the Children's Hospital of Philadelphia. Cancer 107 (7): 1597-606, 2006. [PUBMED Abstract]
  14. Listernick R, Darling C, Greenwald M, et al.: Optic pathway tumors in children: the effect of neurofibromatosis type 1 on clinical manifestations and natural history. J Pediatr 127 (5): 718-22, 1995. [PUBMED Abstract]
  15. Rosai J, Sobin LH, eds.: Dysgenetic syndromes. In: Rosai J, Sobin LH, eds.: Atlas of Tumor Pathology. Third Series. Washington, DC : Armed Forces Institute of Pathology, 1994., pp 379-90.
  16. Allen JC: Initial management of children with hypothalamic and thalamic tumors and the modifying role of neurofibromatosis-1. Pediatr Neurosurg 32 (3): 154-62, 2000. [PUBMED Abstract]
  17. Molloy PT, Bilaniuk LT, Vaughan SN, et al.: Brainstem tumors in patients with neurofibromatosis type 1: a distinct clinical entity. Neurology 45 (10): 1897-902, 1995. [PUBMED Abstract]
  18. Al-Saleem T, Wessner LL, Scheithauer BW, et al.: Malignant tumors of the kidney, brain, and soft tissues in children and young adults with the tuberous sclerosis complex. Cancer 83 (10): 2208-16, 1998. [PUBMED Abstract]
  19. Franz DN, Weiss BD: Molecular therapies for tuberous sclerosis and neurofibromatosis. Curr Neurol Neurosci Rep 12 (3): 294-301, 2012. [PUBMED Abstract]
  20. Bar EE, Lin A, Tihan T, et al.: Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 67 (9): 878-87, 2008. [PUBMED Abstract]
  21. Forshew T, Tatevossian RG, Lawson AR, et al.: Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 218 (2): 172-81, 2009. [PUBMED Abstract]
  22. Jones DT, Kocialkowski S, Liu L, et al.: Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68 (21): 8673-7, 2008. [PUBMED Abstract]
  23. Jones DT, Kocialkowski S, Liu L, et al.: Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28 (20): 2119-23, 2009. [PUBMED Abstract]
  24. Pfister S, Janzarik WG, Remke M, et al.: BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118 (5): 1739-49, 2008. [PUBMED Abstract]
  25. Korshunov A, Meyer J, Capper D, et al.: Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol 118 (3): 401-5, 2009. [PUBMED Abstract]
  26. Horbinski C, Hamilton RL, Nikiforov Y, et al.: Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 119 (5): 641-9, 2010. [PUBMED Abstract]
  27. Yu J, Deshmukh H, Gutmann RJ, et al.: Alterations of BRAF and HIPK2 loci predominate in sporadic pilocytic astrocytoma. Neurology 73 (19): 1526-31, 2009. [PUBMED Abstract]
  28. Lin A, Rodriguez FJ, Karajannis MA, et al.: BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549:BRAF fusion variants. J Neuropathol Exp Neurol 71 (1): 66-72, 2012. [PUBMED Abstract]
  29. Hawkins C, Walker E, Mohamed N, et al.: BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 17 (14): 4790-8, 2011. [PUBMED Abstract]
  30. Becker AP, Scapulatempo-Neto C, Carloni AC, et al.: KIAA1549: BRAF Gene Fusion and FGFR1 Hotspot Mutations Are Prognostic Factors in Pilocytic Astrocytomas. J Neuropathol Exp Neurol 74 (7): 743-54, 2015. [PUBMED Abstract]
  31. Janzarik WG, Kratz CP, Loges NT, et al.: Further evidence for a somatic KRAS mutation in a pilocytic astrocytoma. Neuropediatrics 38 (2): 61-3, 2007. [PUBMED Abstract]
  32. Horbinski C, Nikiforova MN, Hagenkord JM, et al.: Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro Oncol 14 (6): 777-89, 2012. [PUBMED Abstract]
  33. Roth JJ, Fierst TM, Waanders AJ, et al.: Whole Chromosome 7 Gain Predicts Higher Risk of Recurrence in Pediatric Pilocytic Astrocytomas Independently From KIAA1549-BRAF Fusion Status. J Neuropathol Exp Neurol 75 (4): 306-15, 2016. [PUBMED Abstract]
  34. Mistry M, Zhukova N, Merico D, et al.: BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 33 (9): 1015-22, 2015. [PUBMED Abstract]
  35. Dougherty MJ, Santi M, Brose MS, et al.: Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 12 (7): 621-30, 2010. [PUBMED Abstract]
  36. Dias-Santagata D, Lam Q, Vernovsky K, et al.: BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One 6 (3): e17948, 2011. [PUBMED Abstract]
  37. Schindler G, Capper D, Meyer J, et al.: Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121 (3): 397-405, 2011. [PUBMED Abstract]
  38. Lassaletta A, Zapotocky M, Mistry M, et al.: Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. J Clin Oncol 35 (25): 2934-2941, 2017. [PUBMED Abstract]
  39. Ho CY, Mobley BC, Gordish-Dressman H, et al.: A clinicopathologic study of diencephalic pediatric low-grade gliomas with BRAF V600 mutation. Acta Neuropathol 130 (4): 575-85, 2015. [PUBMED Abstract]
  40. Bandopadhayay P, Ramkissoon LA, Jain P, et al.: MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 48 (3): 273-82, 2016. [PUBMED Abstract]
  41. Jones DT, Hutter B, Jäger N, et al.: Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45 (8): 927-32, 2013. [PUBMED Abstract]
  42. Zhang J, Wu G, Miller CP, et al.: Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45 (6): 602-12, 2013. [PUBMED Abstract]
  43. Ramkissoon LA, Horowitz PM, Craig JM, et al.: Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci U S A 110 (20): 8188-93, 2013. [PUBMED Abstract]
  44. Franz DN, Belousova E, Sparagana S, et al.: Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381 (9861): 125-32, 2013. [PUBMED Abstract]
  45. Paugh BS, Qu C, Jones C, et al.: Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28 (18): 3061-8, 2010. [PUBMED Abstract]
  46. Bax DA, Mackay A, Little SE, et al.: A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res 16 (13): 3368-77, 2010. [PUBMED Abstract]
  47. Ward SJ, Karakoula K, Phipps KP, et al.: Cytogenetic analysis of paediatric astrocytoma using comparative genomic hybridisation and fluorescence in-situ hybridisation. J Neurooncol 98 (3): 305-18, 2010. [PUBMED Abstract]
  48. Pollack IF, Hamilton RL, Sobol RW, et al.: IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children's Oncology Group. Childs Nerv Syst 27 (1): 87-94, 2011. [PUBMED Abstract]
  49. Sturm D, Witt H, Hovestadt V, et al.: Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22 (4): 425-37, 2012. [PUBMED Abstract]
  50. Korshunov A, Ryzhova M, Hovestadt V, et al.: Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129 (5): 669-78, 2015. [PUBMED Abstract]
  51. Mackay A, Burford A, Carvalho D, et al.: Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell 32 (4): 520-537.e5, 2017. [PUBMED Abstract]
  52. Buczkowicz P, Hoeman C, Rakopoulos P, et al.: Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46 (5): 451-6, 2014. [PUBMED Abstract]
  53. Taylor KR, Mackay A, Truffaux N, et al.: Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 46 (5): 457-61, 2014. [PUBMED Abstract]
  54. Korshunov A, Schrimpf D, Ryzhova M, et al.: H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol 134 (3): 507-516, 2017. [PUBMED Abstract]
  55. Gielen GH, Gessi M, Buttarelli FR, et al.: Genetic Analysis of Diffuse High-Grade Astrocytomas in Infancy Defines a Novel Molecular Entity. Brain Pathol 25 (4): 409-17, 2015. [PUBMED Abstract]
  56. Hoffman HJ, Berger MS, Becker LE: Cerebellar astrocytomas. In: Deutsch M, ed.: Management of Childhood Brain Tumors. Boston: Kluwer Academic Publishers, 1990, pp 441-56.
  57. Fisher PG, Tihan T, Goldthwaite PT, et al.: Outcome analysis of childhood low-grade astrocytomas. Pediatr Blood Cancer 51 (2): 245-50, 2008. [PUBMED Abstract]
  58. Qaddoumi I, Sultan I, Gajjar A: Outcome and prognostic features in pediatric gliomas: a review of 6212 cases from the Surveillance, Epidemiology, and End Results database. Cancer 115 (24): 5761-70, 2009. [PUBMED Abstract]
  59. Wisoff JH, Sanford RA, Heier LA, et al.: Primary neurosurgery for pediatric low-grade gliomas: a prospective multi-institutional study from the Children's Oncology Group. Neurosurgery 68 (6): 1548-54; discussion 1554-5, 2011. [PUBMED Abstract]
  60. Bandopadhayay P, Bergthold G, London WB, et al.: Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatr Blood Cancer 61 (7): 1173-9, 2014. [PUBMED Abstract]
  61. von Hornstein S, Kortmann RD, Pietsch T, et al.: Impact of chemotherapy on disseminated low-grade glioma in children and adolescents: report from the HIT-LGG 1996 trial. Pediatr Blood Cancer 56 (7): 1046-54, 2011. [PUBMED Abstract]
  62. Mazloom A, Hodges JC, Teh BS, et al.: Outcome of patients with pilocytic astrocytoma and leptomeningeal dissemination. Int J Radiat Oncol Biol Phys 84 (2): 350-4, 2012. [PUBMED Abstract]
  63. Stokland T, Liu JF, Ironside JW, et al.: A multivariate analysis of factors determining tumor progression in childhood low-grade glioma: a population-based cohort study (CCLG CNS9702). Neuro Oncol 12 (12): 1257-68, 2010. [PUBMED Abstract]
  64. Mirow C, Pietsch T, Berkefeld S, et al.: Children <1 year show an inferior outcome when treated according to the traditional LGG treatment strategy: a report from the German multicenter trial HIT-LGG 1996 for children with low grade glioma (LGG). Pediatr Blood Cancer 61 (3): 457-63, 2014. [PUBMED Abstract]
  65. Rakotonjanahary J, De Carli E, Delion M, et al.: Mortality in Children with Optic Pathway Glioma Treated with Up-Front BB-SFOP Chemotherapy. PLoS One 10 (6): e0127676, 2015. [PUBMED Abstract]
  66. Gnekow AK, Walker DA, Kandels D, et al.: A European randomised controlled trial of the addition of etoposide to standard vincristine and carboplatin induction as part of an 18-month treatment programme for childhood (≤16 years) low grade glioma - A final report. Eur J Cancer 81: 206-225, 2017. [PUBMED Abstract]
  67. Chamdine O, Broniscer A, Wu S, et al.: Metastatic Low-Grade Gliomas in Children: 20 Years' Experience at St. Jude Children's Research Hospital. Pediatr Blood Cancer 63 (1): 62-70, 2016. [PUBMED Abstract]
  68. Campbell JW, Pollack IF: Cerebellar astrocytomas in children. J Neurooncol 28 (2-3): 223-31, 1996 May-Jun. [PUBMED Abstract]
  69. Schneider JH Jr, Raffel C, McComb JG: Benign cerebellar astrocytomas of childhood. Neurosurgery 30 (1): 58-62; discussion 62-3, 1992. [PUBMED Abstract]
  70. Due-Tønnessen BJ, Helseth E, Scheie D, et al.: Long-term outcome after resection of benign cerebellar astrocytomas in children and young adults (0-19 years): report of 110 consecutive cases. Pediatr Neurosurg 37 (2): 71-80, 2002. [PUBMED Abstract]
  71. Massimi L, Tufo T, Di Rocco C: Management of optic-hypothalamic gliomas in children: still a challenging problem. Expert Rev Anticancer Ther 7 (11): 1591-610, 2007. [PUBMED Abstract]
  72. Campagna M, Opocher E, Viscardi E, et al.: Optic pathway glioma: long-term visual outcome in children without neurofibromatosis type-1. Pediatr Blood Cancer 55 (6): 1083-8, 2010. [PUBMED Abstract]
  73. Hernáiz Driever P, von Hornstein S, Pietsch T, et al.: Natural history and management of low-grade glioma in NF-1 children. J Neurooncol 100 (2): 199-207, 2010. [PUBMED Abstract]
  74. Finlay JL, Boyett JM, Yates AJ, et al.: Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. Childrens Cancer Group. J Clin Oncol 13 (1): 112-23, 1995. [PUBMED Abstract]
  75. Villano JL, Seery TE, Bressler LR: Temozolomide in malignant gliomas: current use and future targets. Cancer Chemother Pharmacol 64 (4): 647-55, 2009. [PUBMED Abstract]
  • Actualización: 12 de julio de 2018

No hay comentarios:

Publicar un comentario