Características genómicas de los cánceres infantiles (PDQ®)–Versión para profesionales de salud
Neuroblastoma
Los niños con neuroblastoma se pueden agrupar en subconjuntos con diferentes riesgos previstos de recaída de acuerdo con factores clínicos y marcadores biológicos en el momento del diagnóstico.
- Pacientes de neuroblastoma de riesgo bajo o intermedio. Los pacientes clasificados con riesgo bajo o riesgo intermedio tienen un pronóstico favorable; sus tasas de supervivencia son superiores a 95 %. El neuroblastoma de riesgo bajo o intermedio por lo general se presenta en niños menores de 18 meses. Con frecuencia, estos tumores tienen ganancia de cromosomas enteros y son hiperdiploides cuando se los examina mediante citometría de flujo.[1,2]
- Pacientes de neuroblastoma de riesgo alto. Para los pacientes de neuroblastoma de riesgo alto el pronóstico es más reservado; sus tasas de supervivencia a largo plazo son menores a 50 %. El neuroblastoma de riesgo alto se presenta por lo general en niños mayores de 18 meses, con frecuencia metastatiza al hueso y en los tumores se suelen detectar anormalidades cromosómicas segmentarias (ganancias o pérdidas) y amplificación del gen MYCN. Están cerca de la diploidía y la tetraploidía cuando se los examina mediante citometría de flujo.[1-7] Los tumores de riesgo alto muy pocas veces exhiben mutaciones exónicas (para obtener más información consultar la sección de este sumario sobre Mutaciones exónicas en el neuroblastoma), pero la mayoría de los tumores de riesgo alto carecen de dichas mutaciones. En comparación con los cánceres en adultos, los tumores de neuroblastoma exhiben un número bajo de mutaciones por genoma que afectan la secuencia de proteínas (10–20 por genoma).[8]
Las características genómicas clave del neuroblastoma de riesgo alto se describen a continuación:
- Anomalías cromosómicas segmentarias.
- Amplificaciones del gen MYCN.
- Tasas bajas de mutaciones exónicas; las alteraciones recurrentes más comunes son las mutaciones activadoras en ALK.
- Anomalías genómicas que promueven el alargamiento de los telómeros.
Anomalías cromosómicas segmentarias
Las anomalías cromosómicas segmentarias que se encuentran con mayor frecuencia en 1p, 1q, 3p, 11q, 14q y 17p, se detectan mejor mediante hibridación genómica comparativa y se observan en la mayoría de los tumores de neuroblastoma de riesgo alto o en estadio 4.[3-7] En todos los pacientes de neuroblastoma, un mayor número de puntos de rotura de cromosomas (es decir, un número más alto aberraciones cromosómicas segmentarias) se correlacionó con lo siguiente:[3-7][Grado de comprobación: 3iiD]
- Edad avanzada en el momento del diagnóstico.
- Estadio avanzado de la enfermedad.
- Riesgo más alto de recaída.
- Desenlace más precario.
En un estudio de colaboración internacional sobre 556 pacientes de neuroblastoma de riesgo alto se identificaron dos tipos de anomalías segmentarias en el número de copias que se relacionan con desenlaces sumamente desfavorables. Se encontraron pérdidas distales de 6q en 6 % de los pacientes que se relacionaron con una tasa de supervivencia a 10 años de solo 3,4 %; además de la amplificación de MYCN, se detectaron amplificaciones de regiones fuera del locus de MYCN en 18 % de los pacientes y se relacionaron con una tasa de supervivencia a 10 años de 5,8 %.[9]
En un estudio de niños mayores de 12 meses con neuroblastomas primarios inoperables sin metástasis, se encontraron anomalías cromosómicas segmentarias en la mayoría de los niños; los niños mayores fueron más propensos a presentarlas y tener más de estas anomalías en cada célula tumoral. En los niños de 12 a 18 meses, la presencia de anomalías cromosómicas segmentarias tuvo un efecto importante en la supervivencia sin complicaciones (SSC), pero no en la supervivencia general (SG). Sin embargo, en los niños mayores de 18 meses, hubo una diferencia significativa en la SG entre los niños con anomalías cromosómicas segmentarias (67 %) y los niños sin anomalías cromosómicas segmentarias (100 %), con independencia de las características histológicas del tumor.[7]
Amplificación del gen MYCN
La amplificación de MYCN se detecta en 16 a 25 % de los tumores de neuroblastoma.[10] Entre los pacientes con neuroblastoma de riesgo alto, 40 a 50 % de los casos exhiben la amplificación de MYCN.[11]
En todos los estadios de la enfermedad, la amplificación del gen MYCN permite predecir de forma clara un pronóstico más precario, tanto del tiempo transcurrido hasta la progresión tumoral como para la SG.[1,2] En la cohorte de tumores localizados con amplificación de MYCN, los pacientes con tumores hiperdiploides tienen mejores desenlaces que los pacientes con tumores diploides.[12] Sin embargo, los pacientes con tumores hiperdiploides con amplificación de MYCN o cualquier anomalía cromosómica segmentaria evolucionan de modo relativamente precario en comparación con los pacientes con tumores hiperdiploides sin amplificación de MYCN.[3]
En un estudio del Children’s Oncology Group sobre el número de copias de MYCN en 4672 pacientes de neuroblastoma, se informaron los siguientes resultados:[13]
- 79 % tenían tumores con MYCN de tipo natural, 3 % tenían tumores con ganancia de MYCN (definida por el incremento doble o cuádruple en la señal de la hibridación fluorescente in situ) y 18 % tenían tumores con amplificación de MYCN.
- Cuando se examinaron las características clínicas o biológicas individuales, el porcentaje de pacientes con características desfavorables fue más bajo en la categoría de MYCN de tipo natural, fue intermedio en la categoría de ganancia de MYCN, y fue más alto en la categoría de amplificación de MYCN (P < 0,0001), excepto en los tumores con la anomalía 11q, en el que las tasas más altas de características desfavorables se presentaron en la categoría con ganancia de MYCN.
- Los pacientes con enfermedad en estadio diferente al 4, y los pacientes con enfermedad sin riesgo alto y ganancia de MYCN tuvieron un aumento significativo en el riesgo de muerte en comparación con los pacientes con tumores con MYCN de tipo natural.
Las características clínicas y biopatológicas más desfavorables se relacionan en cierta medida con la amplificación de MYCN; en un análisis multivariante de regresión logística de 7102 pacientes del estudio del Internacional Neuroblastoma Group, las anomalías cromosómicas segmentarias agrupadas y la ganancia de 17q fueron las únicas características de pronóstico precario que no se relacionaban con la amplificación de MYCN. No obstante, las anomalías cromosómicas segmentarias en 11q, que es otra característica diagnóstica precaria, son casi mutuamente excluyentes con la amplificación de MYCN.[14,15]
Mutaciones exónicas en el neuroblastoma
En múltiples informes, se documentó que una minoría de neuroblastomas de riesgo alto tienen una incidencia baja de genes mutados de forma recurrente. El gen mutado con más frecuencia es ALK, que está mutado en cerca de 10 % de los pacientes (ver más abajo). Otros genes con frecuencias incluso más bajas de mutación son ATRX, PTPN11, ARID1A y ARID1B.[16-22] Como se muestra en la Figura 9, la mayoría de los neuroblastomas carecen de mutaciones en genes alterados de modo recurrente.
La mutación exónica en ALK, que se encuentra con más frecuencia en el neuroblastoma, es de un receptor tipo tirosina cinasa de la superficie celular que se expresa en grados importantes solo en los encéfalos embrionarios y neonatales en desarrollo. Las mutaciones de la línea germinal en ALK se identificaron como la causa principal del neuroblastoma hereditario. Se encontró que las mutaciones exónicas activadoras somáticamente adquiridas en ALK somáticamente adquiridas también son mutaciones oncoiniciadoras del neuroblastoma.[21]
La presencia de una mutación en ALK se correlaciona con una supervivencia significativamente más precaria de los pacientes con neuroblastoma de riesgo alto e intermedio. Se examinaron mutaciones en ALK en 1596 muestras diagnósticas de neuroblastoma y se observaron los siguientes resultados:[21]
- Las mutaciones en ALK en el dominio de tirosina cinasa se presentaron en 8 % de las muestras —en 3 puntos de gran actividad y en 13 sitios menos activos—, y se correlacionaron significativamente con una supervivencia más precaria en pacientes de neuroblastoma de riesgo alto y riesgo intermedio.
- Se encontraron mutaciones en ALK en 10,9 % de los tumores con amplificación de MYCN en comparación con 7,2 % de los tumores sin amplificación de MYCN.
- La frecuencia más alta de las mutaciones en ALK (11 %) se presentó en los pacientes de más de 10 años de edad.
- La frecuencia de anomalías en ALK fue de 14 % en el grupo de neuroblastoma de riesgo alto, de 6 % en el grupo del neuroblastoma de riesgo intermedio y de 8 % en el grupo de neuroblastoma de riesgo bajo.
- En el grupo de riesgo alto se incluyeron tumores con anomalías en ALK, es decir, coamplificación de ALK y MYCN, que quizás también produzcan la activación de ALK.
En un estudio donde se compararon los datos genómicos de neuroblastomas de diagnóstico primario que se originaron en la glándula suprarrenal (n = 646) con los de neuroblastomas originados en los ganglios simpáticos torácicos (n = 118), 16 % de los tumores torácicos albergaban mutaciones en ALK.[23]
Los inhibidores micromoleculares de la cinasa ALK, como el crizotinib (añadido a la terapia convencional), se están probando en pacientes con neuroblastoma de riesgo alto de diagnóstico reciente y activación de ALK (COG ANBL1531).[21]
Evolución genómica de las mutaciones exónicas
Hay pocos datos sobre la evolución genómica de las mutaciones exónicas desde el diagnóstico hasta la recaída del neuroblastoma. Se aplicó la secuenciación del genoma completo a 23 muestras de tumores de neuroblastoma de diagnóstico y recaída emparejadas con el fin de definir las alteraciones genéticas somáticas relacionadas con la recaída;[24] en un segundo estudio se evaluaron 16 muestras de diagnóstico y recaída emparejadas.[25] En ambos estudios se identificó un aumento del número de mutaciones en las muestras de recaída en comparación con las muestras de diagnóstico; lo anterior se confirmó en un estudio de muestras tumorales de neuroblastoma enviadas a secuenciación de última generación.[26]
- En el primer estudio se encontró una mayor incidencia de mutaciones en los genes relacionados con la señalización de RAS-MAPK en tumores en el momento de la recaída en comparación con tumores del mismo paciente en el momento del diagnóstico: 15 de 23 muestras de recaída contenían mutaciones somáticas en los genes involucrados en esta vía; además, cada mutación fue compatible con la activación de la vía.[24]Asimismo, 3 muestras de recaída exhibieron alteraciones estructurales que comprometían genes de la vía MAPK compatibles con activación de la vía: las anomalías en esta vía se detectaron en 18 de 23 muestras de recaída (78 %). Se encontraron anomalías en ALK (n = 10), NF1 (n = 2) y una en cada uno de los siguientes genes: NRAS, KRAS, HRAS, BRAF, PTPN11 y FGFR1. Como incluso con una secuenciación extensa, 7 de las 18 alteraciones no fueron detectables en el tumor primario, esto subraya la evolución de las mutaciones que presumiblemente conducen a la recaída y la importancia de las evaluaciones genómicas de los tejidos obtenidos en el momento de la recaída.
- En el segundo estudio, no se observaron mutaciones en ALK ni en el momento del diagnóstico ni en el de recaída, pero se observaron variantes de un solo nucleótido recurrentes específicas de la recaída en 11 genes, incluso el supuesto gen supresor tumoral del neuroblastoma CHD5 localizado en el cromosoma 1p36.[25]
En un estudio de secuenciación exhaustiva, 276 muestras de neuroblastoma (pertenecientes a pacientes en todos los estadios y todas las edades en el momento del diagnóstico), que se sometieron a secuenciación exhaustiva (33 000X) de solo 2 puntos calientes mutacionales de amplificación de ALK, exhibieron 4,8 % de mutaciones clonales y 5 % de mutaciones subclonales adicionales; esto sugiere que las mutaciones subclonales del gen ALK son comunes.[27] En consecuencia, la secuenciación exhaustiva permite revelar la presencia de mutaciones de subpoblaciones diminutas de células tumorales de neuroblastoma que es posible que logren sobrevivir durante el tratamiento y proliferar para provocar una recaída.
Alteraciones genómicas que promueven el alargamiento de los telómeros
El alargamiento de los telómeros, los extremos de los cromosomas, promueve la supervivencia celular. Por otra parte, los telómeros se acortan con cada multiplicación celular, lo que resulta finalmente en la incapacidad de replicarse de una célula. Los tumores de neuroblastoma de riesgo bajo exhiben poca actividad de alargamiento de los telómeros. Se identificaron mecanismos genéticos anormales para el alargamiento de los telómeros en tumores de neuroblastoma de riesgo alto.[16,17,28] Hasta el momento, se describieron los tres mecanismos siguientes, que parecen ser mutuamente excluyentes:
- Los reordenamientos cromosómicos que comprometen una región cromosómica en 5p15.33 próxima al gen TERT, que codifica la unidad catalítica de la telomerasa, se presentan en casi 25 % de los casos de neuroblastoma de riesgo alto y son mutuamente excluyentes con las amplificaciones de MYCN y las mutaciones en ATRX.[16,17] Los reordenamientos inducen el aumento regulado de la transcripción de TERT al yuxtaponer la secuencia codificante de TERT con fuertes elementos potenciadores.
- Otro mecanismo que promueve la sobrexpresión de TERT es la amplificación de MYCN,[29] que se relaciona con cerca de 40 a 50 % de los casos de neuroblastoma de riesgo alto.
- La mutación o deleción en ATRX se encuentra en 10 a 20 % de los tumores de neuroblastoma de riesgo alto, casi exclusivamente en niños mayores,[18] y se relaciona con el alargamiento de los telómeros por un mecanismo diferente, denominado alargamiento alternativo de los telómeros.[18,28]
Factores biológicos adicionales relacionados con el pronóstico
Expresión de MYC y MYCN
Con la inmunotinción de las proteínas MYC y MYCN en un subconjunto restringido de 357 tumores de neuroblastoma indiferenciado o pobremente diferenciado, se demostró que la expresión elevada de las proteínas MYC o MYCN es un factor pronóstico importante.[30] De ellos, 68 tumores (19 %) exhibían una expresión alta de la proteína MYCN y 81 tenían amplificación de MYCN. Entre los tumores, 39 (10,9 %) exhibían expresión alta de MYC y eran mutuamente excluyentes de la expresión alta de MYCN; en los tumores con expresión de MYC, no se observaron amplificaciones de los genes MYC o MYCN. En este estudio, no se examinaron las anomalías cromosómicas segmentarias.[30]
- Los pacientes con tumores con características histológicas favorables sin expresión alta de MYCN o MYC tuvieron una supervivencia favorable (SSC a 3 años, 89,7 ± 5,5 %; SG a 3 años, 97 ± 3,2 %).
- Los pacientes con tumores con características histológicas indiferenciadas o pobremente diferenciadas sin expresión de MYCN o MYC tuvieron una tasa de SSC a 3 años de 63,1 (± 13,6 %) y una tasa de SG a 3 años de 83,5 (± 9,4 %).
- Las tasas de SSC a 3 años en pacientes con amplificación de MYCN, expresión alta de MYCN y expresión alta de MYC fueron de 48,1 (± 11,5 %), 46,2 (± 12 %) y 43,4 (± 23,1 %), respectivamente; las tasas de SG fueron de 65,8 (± 11,1 %), 63,2 (± 12,1 %) y 63,5 (± 19,2 %), respectivamente.
- Además, cuando se sometió a un análisis multivariante la expresión alta de las proteínas MYC y MYCN con otros factores pronósticos, incluso la amplificación génica MYC/MYCN, la expresión alta de las proteínas MYC y MYCN fue independiente de otros marcadores pronósticos.
Cinasas receptoras de neurotrofina
La expresión de cinasas receptoras de neurotrofina y sus ligandos varía entre los tumores de riesgo alto y de riesgo bajo. El receptor TrkA se encuentra en tumores de riesgo bajo y se postula que la ausencia de su ligando NGF produce la remisión espontánea del tumor. En contraste, el receptor TrkB se encuentra en los tumores de riesgo alto que también expresan su ligando, BDNF, que promueve el crecimiento y la supervivencia celular del neuroblastoma.[31]
Inhibición del sistema inmunitario
Para tratar el neuroblastoma, es frecuente el uso de los anticuerpos anti-GD2 junto con la modulación del sistema inmunitario a fin de mejorar la actividad antineoplásica del anticuerpo. La eficacia clínica de uno de tales anticuerpos condujo a la aprobación del dinutuximab por la Administración de Alimentos y Medicamentos de los Estados Unidos. Es posible que la respuesta del paciente a la inmunoterapia obedezca en parte a una variación del funcionamiento inmunitario en los pacientes. Un anticuerpo anti-GD2, llamado 3F8, de uso exclusivo para el tratamiento del neuroblastoma en una institución, emplea linfocitos citolíticos naturales para destruir las células de neuroblastoma. Sin embargo, es posible inhibir los linfocitos citolíticos naturales mediante la interacción de antígenos HLA y los subtipos de receptores de inmunoglobulina de los linfocitos citolíticos naturales (KIR).[32,33] Este hallazgo se confirmó y se amplió mediante un análisis de desenlaces de pacientes tratados en el estudio nacional aleatorizado COG-ANBL0032 (NCT00026312) con el anticuerpo anti-GD2 dinutuximab combinado con el factor estimulante de colonias de granulocitos y macrófagos e interleucina 2. En el estudio, se encontró que ciertos genotipos del ligando KIR/KIR se relacionaban con mejores desenlaces en pacientes tratados con inmunoterapia.[34][Grado de comprobación: 1A] La presencia de ligandos inhibitorios KIR/KIR se vinculó con una disminución del efecto de la inmunoterapia. Por lo tanto, los genes del sistema inmunitario del paciente ayudan a determinar la respuesta del neuroblastoma a la inmunoterapia. Son necesarios más estudios para determinar si este sistema de genotipificación del sistema inmunitario puede guiar la selección de pacientes para recibir ciertos tipos de inmunoterapias.
(Para obtener más información sobre el tratamiento del neuroblastoma, consultar el sumario del PDQ Tratamiento del neuroblastoma).
Bibliografía
- Cohn SL, Pearson AD, London WB, et al.: The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27 (2): 289-97, 2009. [PUBMED Abstract]
- Schleiermacher G, Mosseri V, London WB, et al.: Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. Br J Cancer 107 (8): 1418-22, 2012. [PUBMED Abstract]
- Janoueix-Lerosey I, Schleiermacher G, Michels E, et al.: Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol 27 (7): 1026-33, 2009. [PUBMED Abstract]
- Schleiermacher G, Michon J, Ribeiro A, et al.: Segmental chromosomal alterations lead to a higher risk of relapse in infants with MYCN-non-amplified localised unresectable/disseminated neuroblastoma (a SIOPEN collaborative study). Br J Cancer 105 (12): 1940-8, 2011. [PUBMED Abstract]
- Carén H, Kryh H, Nethander M, et al.: High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc Natl Acad Sci U S A 107 (9): 4323-8, 2010. [PUBMED Abstract]
- Schleiermacher G, Janoueix-Lerosey I, Ribeiro A, et al.: Accumulation of segmental alterations determines progression in neuroblastoma. J Clin Oncol 28 (19): 3122-30, 2010. [PUBMED Abstract]
- Defferrari R, Mazzocco K, Ambros IM, et al.: Influence of segmental chromosome abnormalities on survival in children over the age of 12 months with unresectable localised peripheral neuroblastic tumours without MYCN amplification. Br J Cancer 112 (2): 290-5, 2015. [PUBMED Abstract]
- Pugh TJ, Morozova O, Attiyeh EF, et al.: The genetic landscape of high-risk neuroblastoma. Nat Genet 45 (3): 279-84, 2013. [PUBMED Abstract]
- Depuydt P, Boeva V, Hocking TD, et al.: Genomic Amplifications and Distal 6q Loss: Novel Markers for Poor Survival in High-risk Neuroblastoma Patients. J Natl Cancer Inst 110 (10): 1084-1093, 2018. [PUBMED Abstract]
- Ambros PF, Ambros IM, Brodeur GM, et al.: International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer 100 (9): 1471-82, 2009. [PUBMED Abstract]
- Kreissman SG, Seeger RC, Matthay KK, et al.: Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial. Lancet Oncol 14 (10): 999-1008, 2013. [PUBMED Abstract]
- Bagatell R, Beck-Popovic M, London WB, et al.: Significance of MYCN amplification in international neuroblastoma staging system stage 1 and 2 neuroblastoma: a report from the International Neuroblastoma Risk Group database. J Clin Oncol 27 (3): 365-70, 2009. [PUBMED Abstract]
- Campbell K, Gastier-Foster JM, Mann M, et al.: Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma: A report from the Children's Oncology Group. Cancer 123 (21): 4224-4235, 2017. [PUBMED Abstract]
- Plantaz D, Vandesompele J, Van Roy N, et al.: Comparative genomic hybridization (CGH) analysis of stage 4 neuroblastoma reveals high frequency of 11q deletion in tumors lacking MYCN amplification. Int J Cancer 91 (5): 680-6, 2001. [PUBMED Abstract]
- Maris JM, Hogarty MD, Bagatell R, et al.: Neuroblastoma. Lancet 369 (9579): 2106-20, 2007. [PUBMED Abstract]
- Peifer M, Hertwig F, Roels F, et al.: Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526 (7575): 700-4, 2015. [PUBMED Abstract]
- Valentijn LJ, Koster J, Zwijnenburg DA, et al.: TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat Genet 47 (12): 1411-4, 2015. [PUBMED Abstract]
- Cheung NK, Zhang J, Lu C, et al.: Association of age at diagnosis and genetic mutations in patients with neuroblastoma. JAMA 307 (10): 1062-71, 2012. [PUBMED Abstract]
- Molenaar JJ, Koster J, Zwijnenburg DA, et al.: Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483 (7391): 589-93, 2012. [PUBMED Abstract]
- Sausen M, Leary RJ, Jones S, et al.: Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat Genet 45 (1): 12-7, 2013. [PUBMED Abstract]
- Bresler SC, Weiser DA, Huwe PJ, et al.: ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell 26 (5): 682-94, 2014. [PUBMED Abstract]
- Janoueix-Lerosey I, Lequin D, Brugières L, et al.: Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455 (7215): 967-70, 2008. [PUBMED Abstract]
- Oldridge DA, Truong B, Russ D, et al.: Differences in Genomic Profiles and Outcomes between Thoracic and Adrenal Neuroblastoma. J Natl Cancer Inst : , 2019. [PUBMED Abstract]
- Eleveld TF, Oldridge DA, Bernard V, et al.: Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat Genet 47 (8): 864-71, 2015. [PUBMED Abstract]
- Schramm A, Köster J, Assenov Y, et al.: Mutational dynamics between primary and relapse neuroblastomas. Nat Genet 47 (8): 872-7, 2015. [PUBMED Abstract]
- Padovan-Merhar OM, Raman P, Ostrovnaya I, et al.: Enrichment of Targetable Mutations in the Relapsed Neuroblastoma Genome. PLoS Genet 12 (12): e1006501, 2016. [PUBMED Abstract]
- Bellini A, Bernard V, Leroy Q, et al.: Deep Sequencing Reveals Occurrence of Subclonal ALK Mutations in Neuroblastoma at Diagnosis. Clin Cancer Res 21 (21): 4913-21, 2015. [PUBMED Abstract]
- Kurihara S, Hiyama E, Onitake Y, et al.: Clinical features of ATRX or DAXX mutated neuroblastoma. J Pediatr Surg 49 (12): 1835-8, 2014. [PUBMED Abstract]
- Mac SM, D'Cunha CA, Farnham PJ: Direct recruitment of N-myc to target gene promoters. Mol Carcinog 29 (2): 76-86, 2000. [PUBMED Abstract]
- Wang LL, Teshiba R, Ikegaki N, et al.: Augmented expression of MYC and/or MYCN protein defines highly aggressive MYC-driven neuroblastoma: a Children's Oncology Group study. Br J Cancer 113 (1): 57-63, 2015. [PUBMED Abstract]
- Maris JM, Matthay KK: Molecular biology of neuroblastoma. J Clin Oncol 17 (7): 2264-79, 1999. [PUBMED Abstract]
- Forlenza CJ, Boudreau JE, Zheng J, et al.: KIR3DL1 Allelic Polymorphism and HLA-B Epitopes Modulate Response to Anti-GD2 Monoclonal Antibody in Patients With Neuroblastoma. J Clin Oncol 34 (21): 2443-51, 2016. [PUBMED Abstract]
- Venstrom JM, Zheng J, Noor N, et al.: KIR and HLA genotypes are associated with disease progression and survival following autologous hematopoietic stem cell transplantation for high-risk neuroblastoma. Clin Cancer Res 15 (23): 7330-4, 2009. [PUBMED Abstract]
- Erbe AK, Wang W, Carmichael L, et al.: Neuroblastoma Patients' KIR and KIR-Ligand Genotypes Influence Clinical Outcome for Dinutuximab-based Immunotherapy: A Report from the Children's Oncology Group. Clin Cancer Res 24 (1): 189-196, 2018. [PUBMED Abstract]
Retinoblastoma
El retinoblastoma es un tumor que se presenta en formas hereditarias (25–30 %) y no hereditarias (70–75 %). La enfermedad hereditaria se define por la presencia de una mutación de la línea germinal en el gen RB1. Esta mutación en la línea germinal se hereda de un progenitor afectado (25 % de los casos) o sucede en una célula germinal antes de la concepción o en el útero durante la embriogénesis temprana en pacientes con enfermedad esporádica (75 % de los casos). La presencia de antecedentes familiares de retinoblastoma, o enfermedad bilateral o multifocal puede indicar enfermedad hereditaria.
El retinoblastoma hereditario se manifiesta como enfermedad unilateral o bilateral. Es probable que la penetrancia de la mutación en RB1 (lateralidad, edad en el momento del diagnóstico y número de tumores) dependa de modificadores genéticos simultáneos, como los polimorfismos en MDM2 y MDM4.[1,2] Se presume que todos los niños con enfermedad bilateral y cerca de 15 % de los pacientes con enfermedad unilateral tienen la forma hereditaria, a pesar de que solo 25 % tienen un padre afectado.
En niños con retinoblastoma hereditario, el diagnóstico tiende a hacerse a una edad más temprana que en los niños con la forma no hereditaria de la enfermedad. Se pensaba que el retinoblastoma unilateral en niños menores de 1 año planteaba la sospecha de una enfermedad hereditaria, mientras que un tumor unilateral en niños mayores indicaba una probabilidad más alta de la forma no hereditaria de la enfermedad.[3] No obstante, en un informe retrospectivo de una sola institución con 182 pacientes de retinoblastoma unilateral, el diagnóstico de los pacientes con un resultado genético positivo (n = 32) se estableció en una media de edad de 26 meses, y el diagnóstico de los pacientes con resultado genético negativo se estableció en una media de edad de 22 meses (P = 0,31).[4]
El panorama actual de las características genómicas del retinoblastoma se orienta por las alteraciones en RB1 que producen inactivación bialélica.[5,6] Una causa poco frecuente de inactivación de RB1 es la cromotripsis, que es difícil de detectar con los métodos convencionales.[7] Otros cambios genómicos recurrentes que se presentan en una pequeña minoría de los tumores son la mutación o deleción en BCOR, la amplificación de MYCN y la amplificación de OTX2.[5-7] En un estudio de 1068 casos de tumores unilaterales de retinoblastoma no familiar, se notificó que un porcentaje pequeño de casos (casi 3 %) carecían de pruebas de pérdida de RB1. Alrededor de la mitad de estos casos sin pérdida de RB1 (casi 1,5 % de todos los casos de retinoblastoma no familiar de tipo unilateral) exhibieron amplificación de MYCN.[6] Se infiere que el estado funcional de la proteína del retinoblastoma (pRb) es inactivo en el retinoblastoma con amplificación de MYCN. Esto indica que la inactivación de RB1 por mutación o la proteína pRb inactiva es un requisito para la presentación de un retinoblastoma, de manera independiente a la amplificación de MYCN.[8]
(Para obtener más información sobre el tratamiento del retinoblastoma, consultar el sumario del PDQ Tratamiento del retinoblastoma).
Bibliografía
- Castéra L, Sabbagh A, Dehainault C, et al.: MDM2 as a modifier gene in retinoblastoma. J Natl Cancer Inst 102 (23): 1805-8, 2010. [PUBMED Abstract]
- de Oliveira Reis AH, de Carvalho IN, de Sousa Damasceno PB, et al.: Influence of MDM2 and MDM4 on development and survival in hereditary retinoblastoma. Pediatr Blood Cancer 59 (1): 39-43, 2012. [PUBMED Abstract]
- Zajaczek S, Jakubowska A, Kurzawski G, et al.: Age at diagnosis to discriminate those patients for whom constitutional DNA sequencing is appropriate in sporadic unilateral retinoblastoma. Eur J Cancer 34 (12): 1919-21, 1998. [PUBMED Abstract]
- Berry JL, Lewis L, Zolfaghari E, et al.: Lack of correlation between age at diagnosis and RB1 mutations for unilateral retinoblastoma: the importance of genetic testing. Ophthalmic Genet 39 (3): 407-409, 2018. [PUBMED Abstract]
- Zhang J, Benavente CA, McEvoy J, et al.: A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481 (7381): 329-34, 2012. [PUBMED Abstract]
- Rushlow DE, Mol BM, Kennett JY, et al.: Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol 14 (4): 327-34, 2013. [PUBMED Abstract]
- McEvoy J, Nagahawatte P, Finkelstein D, et al.: RB1 gene inactivation by chromothripsis in human retinoblastoma. Oncotarget 5 (2): 438-50, 2014. [PUBMED Abstract]
- Ewens KG, Bhatti TR, Moran KA, et al.: Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma. Cancer Med 6 (3): 619-630, 2017. [PUBMED Abstract]
No hay comentarios:
Publicar un comentario