Tratamiento del cáncer de seno (mama) (PDQ®)–Versión para profesionales de salud
SECCIONES
- Información general sobre el cáncer de mama
- Clasificación histopatológica del cáncer de mama
- Información sobre los estadios del cáncer de mama
- Cáncer de mama en estadio temprano, localizado u operable
- Cáncer de mama localmente avanzado o inflamatorio
- Cáncer de mama con recidiva locorregional
- Cáncer de mama metastásico
- Carcinoma ductal in situ
- Modificaciones a este sumario (07/29/2016)
- Información sobre este sumario del PDQ
- Ver todas las secciones
Información general sobre el cáncer de mama
Este sumario trata solo de los cánceres de mama epiteliales primarios en la mujer. Con escasa frecuencia, la mama puede estar comprometida por otros tumores, como linfomas, sarcomas o melanomas. Para mayor información, consultar los sumarios del PDQ sobre estos tipos de tratamiento:
El cáncer de mama también afecta a los hombres y los niños y puede presentarse en el embarazo, aunque es poco frecuente en estas poblaciones. Para mayor información, consultar los siguientes sumarios del PDQ:
- Cáncer de seno (mama) masculino
- Tratamiento del cáncer de seno (mama) en el embarazo
- Cánceres poco comunes en la niñez
Incidencia y mortalidad
Cálculo del número de casos nuevos y defunciones por cáncer de mama (solo mujeres) en Estados Unidos en 2016:[1]
- Casos nuevos: 246 660.
- Defunciones: 40 450.
El cáncer de mama es el cáncer extracutáneo más frecuente en las mujeres estadounidenses; se calcula que, en 2016, se presentarán 61 000 casos de enfermedad in situ, 246 660 casos nuevos de enfermedad invasora y 40 450 defunciones.[1] Por tanto, menos de 1 de cada 6 mujeres diagnosticadas con cáncer de mama muere por esta enfermedad. En comparación, se estima que cerca de 72 160 mujeres estadounidenses morirán por cáncer de pulmón en 2016.[1] Los hombres representan 1 % de los casos de cáncer de mama y las muertes por esta causa (para mayor información, consultar la sección sobre Poblaciones especiales en el sumario del PDQ Exámenes de detección del cáncer de mama).
La adopción generalizada de los exámenes de detección aumenta la incidencia de cáncer de mama en una población dada y cambia las características de los cánceres que se detectan, con un aumento en la incidencia de los cánceres de riesgo bajo, las lesiones premalignas y el carcinoma ductal in situ (CDIS). (Para mayor información, consultar la sección Carcinoma ductal in situ en la sección sobre Diagnóstico del cáncer de mama y características patológicas en el sumario del PDQ Exámenes de detección del cáncer de mama). En los estudios demográficos realizados en los Estados Unidos [2] y el Reino Unido,[3] se observó un aumento de casos de CDIS y de incidencia de cáncer de mama invasivo desde los años 70, que se puede atribuir a la adopción generalizada tanto de la hormonoterapia posmenopáusica como de los exámenes de detección por mamografía. En el último decenio, las mujeres se han abstenido del uso de las hormonas posmenopáusicas y la incidencia de cáncer de mama ha disminuido, pero no a los índices observados antes del uso generalizado de la mamografía como examen de detección.[4]
Características anatómicas
Factores de riesgo y factores de protección
La edad más avanzada es el factor de riesgo más importante para el cáncer de mama.[2] Los siguientes son otros factores del cáncer de mama:
- Antecedentes familiares.[5]
- Susceptibilidad significativa a un factor hereditario.[6-8]
- Ingesta de alcohol.[14]
- Densidad del tejido mamario (mamográfico).[15,16]
- Estrógeno (endógeno):[17-20]
- Antecedentes de tratamiento hormonal.[24]
- Obesidad.[29,30]
- Antecedentes personales de cáncer de mama.[31]
- Antecedentes personales de formas proliferativas de enfermedad mamaria benigna.[32-38]
- Raza.[39,40]
- Exposición de la mama o el pecho a la radiación.[41,42]
Se dispone de cálculos de riesgo específicos por edad con el fin de orientar y diseñar estrategias de detección para mujeres con antecedentes familiares de cáncer de mama.[43,44]
De todas las mujeres con cáncer de mama, entre 5 y 10 % puede tener una mutación de la línea germinal en los genes BRCA1 y BRCA2.[45] Las mutaciones específicas en BRCA1 yBRCA2 son más frecuentes en las mujeres de ascendencia judía.[46] El riesgo estimado de por vida de cáncer de mama en las mujeres con mutaciones en BRCA1 y BRCA2 oscila entre 40 y 85 %. Las portadoras con antecedentes de cáncer de mama tienen un riesgo mayor de enfermedad contralateral que puede llegar a 5 % al año.[47] Los hombres portadores de mutaciones en BRCA2 también tienen un riesgo mayor de cáncer de mama.[48]
Las mutaciones en el gen BRCA1 o BRCA2 también confieren un riesgo mayor de cáncer de ovario [48,49] u otros cánceres primarios.[48,49] Una vez se identifican las mutaciones enBRCA1 o BRCA2, se puede derivar a otros familiares a consejería genética y análisis.[50-53] (Para mayor información, consultar los sumarios sobre Características genéticas de los cánceres ginecológicos y de mama (en inglés); Prevención del cáncer de mama yExámenes de detección del cáncer de mama).
(Para mayor información sobre los factores que aumentan el riesgo de cáncer de mama, consultar el sumario del PDQ sobre Prevención del cáncer de mama.)
Los siguientes son los factores de protección y las intervenciones para reducir el riesgo de cáncer de mama femenino:
- Uso de estrógeno (después de una histerectomía).[54-56]
- Ejercicio.[57-59]
- Embarazo temprano.[23,60,61]
- Lactancia materna.[62]
- Moduladores selectivos del receptor de estrógeno (MSRE).[63]
- Inhibidores o desactivadores de la aromatasa.[64,65]
- Mastectomía para reducir el riesgo.[66]
- Ooforectomía o ablación ovárica para reducir el riesgo.[67-70]
(Para mayor información sobre los factores que disminuyen el riesgo de cáncer de mama, consultar el sumario del PDQ sobre Prevención del cáncer de mama.)
Exámenes de detección
Los ensayos clínicos establecieron que la detección por mamografía, con examen clínico de la mama o sin este, disminuye la mortalidad por cáncer de mama. (Para mayor información, consultar el sumario del PDQ sobre Exámenes de detección del cáncer de mama).
Diagnóstico
Evaluación del paciente
Cuando se presume que hay cáncer de mama, el tratamiento del paciente suele incluir lo siguiente:
- Confirmación del pronóstico.
- Evaluación del estadio de la enfermedad.
- Selección del tratamiento.
Las siguientes son las pruebas y procedimientos que se usan para diagnosticar el cáncer de mama:
- Mamografía.
- Ecografía.
- Imágenes por resonancia magnética (IRM) de la mama por indicación clínica.
- Biopsia.
Enfermedad contralateral
Desde el punto de vista patológico, el cáncer de mama puede ser una enfermedad multicéntrica y bilateral. La enfermedad bilateral es, en cierto modo, más frecuente en las pacientes con carcinoma lobulillar infiltrante. A los diez años del diagnóstico, el riesgo de cáncer de mama primario en la mama contralateral oscila entre 3 y 10 %, si bien el tratamiento endocrino disminuye el riesgo.[71-73] La presentación de cáncer de mama contralateral se relaciona con un mayor riesgo de recidiva a distancia.[74] Cuando las portadoras de mutaciones en BRCA1 o BRCA2 recibieron un diagnóstico antes de los 40 años, el riesgo de cáncer de mama contralateral alcanzó casi 50 % en los siguientes 25 años.[75,76]
Las pacientes con cáncer de mama se someterán a mamografía bilateral en el momento del diagnóstico para descartar una enfermedad sincrónica. A fin de detectar recidivas en la mama ipsilateral de las pacientes sometidas a cirugía con conservación de la mama o un segundo cáncer primario en la mama contralateral, las pacientes continuarán sometiéndose a mamografías y exámenes físicos de mama con regularidad.
La función de las IRM en los exámenes de detección para la mama contralateral y los controles de las mujeres en tratamiento con terapia para conservar la mama continúan en evolución. Debido al aumento de la tasa de enfermedad mamográficamente oculta, se usan, con mayor frecuencia, las IRM como prueba de detección adicional, a pesar de la ausencia de datos aleatorizados y controlados. Se recomienda la confirmación patológica antes del tratamiento, ya que solo 25 % de los hallazgos positivos de las IRM presenta malignidad. No se sabe si este aumento de la tasa de detección se traducirá en una mejora del resultado del tratamiento.[77-79]
Factores pronósticos
El cáncer de mama, por lo general, se trata con varias combinaciones de cirugía, radioterapia, quimioterapia y hormonoterapia. El pronóstico y opción de tratamiento puede verse influido por las siguientes características clínicas y patológicas (con base en las características histológicas e inmunohistoquímicas):[80]
- Estado menopáusico de la paciente.
- Estadio de la enfermedad.
- Grado del tumor primario.
- Estado del receptor de estrógeno (RE) y el receptor de progesterona (RP) del tumor.
- Sobreexpresión o amplificación del factor de crecimiento epidérmico humano tipo 2 (HER2/neu).
- El tipo histológico. El cáncer de mama se clasifica en una variedad de tipos histológicos, algunos de los cuales tienen importancia pronóstica. Por ejemplo, los tipos histológicos favorables son mucinoso, medular y carcinoma tubular.[81-83]
Los siguientes son los perfiles moleculares que se usan para el cáncer de mama:[84]
- Prueba del estado del RE y el RP.
- Prueba del estado del receptor HER2/neu.
- Prueba del perfil genético mediante ensayo de micromatriz o reacción en cadena de la polimerasa con retrotranscriptasa (por ejemplo, MammaPrint, Oncotype DX).
Con base en estos resultados, el cáncer de mama se clasifica como:
- Receptor hormonal positivo.
- HER2 positivo.
- Triple negativo (RE, RP, y Her2/neu negativos).
Si bien ciertas mutaciones hereditarias, como aquellas en BRCA1 y BRCA2, predisponen a las mujeres a presentar cáncer de mama, los datos pronósticos sobre las portadoras de las mutaciones BRCA1 y BRCA2 que han presentado cáncer de mama son contradictorios; estas mujeres tienen un mayor riesgo de presentar enfermedad contralateral.
Consideraciones posteriores al tratamiento
Tratamiento de remplazo hormonal
Luego de minuciosa consideración, los pacientes con síntomas graves se pueden tratar con terapia de remplazo hormonal. Para mayor información, consultar los siguientes sumarios del PDQ:
Sumarios relacionados
Otros sumarios del PDQ que contienen información relacionada con el cáncer de mama son los siguientes:
- Prevención del cáncer de mama
- Exámenes de detección del cáncer de mama
- Tratamiento del cáncer de seno (mama) en el embarazo
- Características genéticas de los cánceres ginecológicos y de mama (en inglés)
- Cáncer de seno (mama) masculino
- Tratamientos de los cánceres poco comunes en la niñez (cáncer de mama infantil)
Bibliografía
- American Cancer Society: Cancer Facts and Figures 2016. Atlanta, Ga: American Cancer Society, 2016. Available online. Last accessed July 11, 2016.
- Altekruse SF, Kosary CL, Krapcho M, et al.: SEER Cancer Statistics Review, 1975-2007. Bethesda, Md: National Cancer Institute, 2010. Also available online. Last accessed June 28, 2016.
- Johnson A, Shekhdar J: Breast cancer incidence: what do the figures mean? J Eval Clin Pract 11 (1): 27-31, 2005. [PUBMED Abstract]
- Haas JS, Kaplan CP, Gerstenberger EP, et al.: Changes in the use of postmenopausal hormone therapy after the publication of clinical trial results. Ann Intern Med 140 (3): 184-8, 2004. [PUBMED Abstract]
- Colditz GA, Rosner BA, Speizer FE: Risk factors for breast cancer according to family history of breast cancer. For the Nurses' Health Study Research Group. J Natl Cancer Inst 88 (6): 365-71, 1996. [PUBMED Abstract]
- Colditz GA, Kaphingst KA, Hankinson SE, et al.: Family history and risk of breast cancer: nurses' health study. Breast Cancer Res Treat 133 (3): 1097-104, 2012. [PUBMED Abstract]
- Malone KE, Daling JR, Doody DR, et al.: Family history of breast cancer in relation to tumor characteristics and mortality in a population-based study of young women with invasive breast cancer. Cancer Epidemiol Biomarkers Prev 20 (12): 2560-71, 2011. [PUBMED Abstract]
- Cybulski C, Wokołorczyk D, Jakubowska A, et al.: Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J Clin Oncol 29 (28): 3747-52, 2011. [PUBMED Abstract]
- Goodwin PJ, Phillips KA, West DW, et al.: Breast cancer prognosis in BRCA1 and BRCA2 mutation carriers: an International Prospective Breast Cancer Family Registry population-based cohort study. J Clin Oncol 30 (1): 19-26, 2012. [PUBMED Abstract]
- Mavaddat N, Barrowdale D, Andrulis IL, et al.: Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev 21 (1): 134-47, 2012. [PUBMED Abstract]
- Miki Y, Swensen J, Shattuck-Eidens D, et al.: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266 (5182): 66-71, 1994. [PUBMED Abstract]
- Futreal PA, Liu Q, Shattuck-Eidens D, et al.: BRCA1 mutations in primary breast and ovarian carcinomas. Science 266 (5182): 120-2, 1994. [PUBMED Abstract]
- Wooster R, Neuhausen SL, Mangion J, et al.: Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265 (5181): 2088-90, 1994. [PUBMED Abstract]
- Hamajima N, Hirose K, Tajima K, et al.: Alcohol, tobacco and breast cancer--collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer 87 (11): 1234-45, 2002. [PUBMED Abstract]
- Boyd NF, Martin LJ, Rommens JM, et al.: Mammographic density: a heritable risk factor for breast cancer. Methods Mol Biol 472: 343-60, 2009. [PUBMED Abstract]
- McCormack VA, dos Santos Silva I: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15 (6): 1159-69, 2006. [PUBMED Abstract]
- Key TJ, Appleby PN, Reeves GK, et al.: Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer 105 (5): 709-22, 2011. [PUBMED Abstract]
- Kaaks R, Rinaldi S, Key TJ, et al.: Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer 12 (4): 1071-82, 2005. [PUBMED Abstract]
- Kaaks R, Berrino F, Key T, et al.: Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst 97 (10): 755-65, 2005. [PUBMED Abstract]
- Endogenous Hormones and Breast Cancer Collaborative Group: Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94 (8): 606-16, 2002. [PUBMED Abstract]
- Collaborative Group on Hormonal Factors in Breast Cancer: Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 13 (11): 1141-51, 2012. [PUBMED Abstract]
- Ritte R, Lukanova A, Tjønneland A, et al.: Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer: a cohort study. Int J Cancer 132 (11): 2619-29, 2013. [PUBMED Abstract]
- Kampert JB, Whittemore AS, Paffenbarger RS Jr: Combined effect of childbearing, menstrual events, and body size on age-specific breast cancer risk. Am J Epidemiol 128 (5): 962-79, 1988. [PUBMED Abstract]
- Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Collaborative Group on Hormonal Factors in Breast Cancer. Lancet 350 (9084): 1047-59, 1997. [PUBMED Abstract]
- Writing Group for the Women's Health Initiative Investigators: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 288 (3): 321-33, 2002. [PUBMED Abstract]
- Chlebowski RT, Anderson GL, Gass M, et al.: Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA 304 (15): 1684-92, 2010. [PUBMED Abstract]
- Chlebowski RT, Hendrix SL, Langer RD, et al.: Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women's Health Initiative Randomized Trial. JAMA 289 (24): 3243-53, 2003. [PUBMED Abstract]
- Chlebowski RT, Manson JE, Anderson GL, et al.: Estrogen plus progestin and breast cancer incidence and mortality in the Women's Health Initiative Observational Study. J Natl Cancer Inst 105 (8): 526-35, 2013. [PUBMED Abstract]
- Wolin KY, Carson K, Colditz GA: Obesity and cancer. Oncologist 15 (6): 556-65, 2010. [PUBMED Abstract]
- Morimoto LM, White E, Chen Z, et al.: Obesity, body size, and risk of postmenopausal breast cancer: the Women's Health Initiative (United States). Cancer Causes Control 13 (8): 741-51, 2002. [PUBMED Abstract]
- Kotsopoulos J, Chen WY, Gates MA, et al.: Risk factors for ductal and lobular breast cancer: results from the nurses' health study. Breast Cancer Res 12 (6): R106, 2010. [PUBMED Abstract]
- Goldacre MJ, Abisgold JD, Yeates DG, et al.: Benign breast disease and subsequent breast cancer: English record linkage studies. J Public Health (Oxf) 32 (4): 565-71, 2010. [PUBMED Abstract]
- Kabat GC, Jones JG, Olson N, et al.: A multi-center prospective cohort study of benign breast disease and risk of subsequent breast cancer. Cancer Causes Control 21 (6): 821-8, 2010. [PUBMED Abstract]
- Worsham MJ, Raju U, Lu M, et al.: Risk factors for breast cancer from benign breast disease in a diverse population. Breast Cancer Res Treat 118 (1): 1-7, 2009. [PUBMED Abstract]
- Pearlman MD, Griffin JL: Benign breast disease. Obstet Gynecol 116 (3): 747-58, 2010. [PUBMED Abstract]
- Vogel VG: Epidemiology, genetics, and risk evaluation of postmenopausal women at risk of breast cancer. Menopause 15 (4 Suppl): 782-9, 2008 Jul-Aug. [PUBMED Abstract]
- Degnim AC, Visscher DW, Berman HK, et al.: Stratification of breast cancer risk in women with atypia: a Mayo cohort study. J Clin Oncol 25 (19): 2671-7, 2007. [PUBMED Abstract]
- Worsham MJ, Abrams J, Raju U, et al.: Breast cancer incidence in a cohort of women with benign breast disease from a multiethnic, primary health care population. Breast J 13 (2): 115-21, 2007 Mar-Apr. [PUBMED Abstract]
- Razzaghi H, Troester MA, Gierach GL, et al.: Mammographic density and breast cancer risk in White and African American Women. Breast Cancer Res Treat 135 (2): 571-80, 2012. [PUBMED Abstract]
- Pfeiffer RM, Mitani A, Matsuno RK, et al.: Racial differences in breast cancer trends in the United States (2000-2004). J Natl Cancer Inst 100 (10): 751-2, 2008. [PUBMED Abstract]
- Andrieu N, Easton DF, Chang-Claude J, et al.: Effect of chest X-rays on the risk of breast cancer among BRCA1/2 mutation carriers in the international BRCA1/2 carrier cohort study: a report from the EMBRACE, GENEPSO, GEO-HEBON, and IBCCS Collaborators' Group. J Clin Oncol 24 (21): 3361-6, 2006. [PUBMED Abstract]
- Bhatia S, Robison LL, Oberlin O, et al.: Breast cancer and other second neoplasms after childhood Hodgkin's disease. N Engl J Med 334 (12): 745-51, 1996. [PUBMED Abstract]
- Claus EB, Risch N, Thompson WD: Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer 73 (3): 643-51, 1994. [PUBMED Abstract]
- Gail MH, Brinton LA, Byar DP, et al.: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81 (24): 1879-86, 1989. [PUBMED Abstract]
- Blackwood MA, Weber BL: BRCA1 and BRCA2: from molecular genetics to clinical medicine. J Clin Oncol 16 (5): 1969-77, 1998. [PUBMED Abstract]
- Offit K, Gilewski T, McGuire P, et al.: Germline BRCA1 185delAG mutations in Jewish women with breast cancer. Lancet 347 (9016): 1643-5, 1996. [PUBMED Abstract]
- Frank TS, Manley SA, Olopade OI, et al.: Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk. J Clin Oncol 16 (7): 2417-25, 1998. [PUBMED Abstract]
- Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J Natl Cancer Inst 91 (15): 1310-6, 1999. [PUBMED Abstract]
- Ford D, Easton DF, Bishop DT, et al.: Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 343 (8899): 692-5, 1994. [PUBMED Abstract]
- Biesecker BB, Boehnke M, Calzone K, et al.: Genetic counseling for families with inherited susceptibility to breast and ovarian cancer. JAMA 269 (15): 1970-4, 1993. [PUBMED Abstract]
- Berry DA, Parmigiani G, Sanchez J, et al.: Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history. J Natl Cancer Inst 89 (3): 227-38, 1997. [PUBMED Abstract]
- Hoskins KF, Stopfer JE, Calzone KA, et al.: Assessment and counseling for women with a family history of breast cancer. A guide for clinicians. JAMA 273 (7): 577-85, 1995. [PUBMED Abstract]
- Statement of the American Society of Clinical Oncology: genetic testing for cancer susceptibility, Adopted on February 20, 1996. J Clin Oncol 14 (5): 1730-6; discussion 1737-40, 1996. [PUBMED Abstract]
- Anderson GL, Limacher M, Assaf AR, et al.: Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA 291 (14): 1701-12, 2004. [PUBMED Abstract]
- LaCroix AZ, Chlebowski RT, Manson JE, et al.: Health outcomes after stopping conjugated equine estrogens among postmenopausal women with prior hysterectomy: a randomized controlled trial. JAMA 305 (13): 1305-14, 2011. [PUBMED Abstract]
- Anderson GL, Chlebowski RT, Aragaki AK, et al.: Conjugated equine oestrogen and breast cancer incidence and mortality in postmenopausal women with hysterectomy: extended follow-up of the Women's Health Initiative randomised placebo-controlled trial. Lancet Oncol 13 (5): 476-86, 2012. [PUBMED Abstract]
- Bernstein L, Henderson BE, Hanisch R, et al.: Physical exercise and reduced risk of breast cancer in young women. J Natl Cancer Inst 86 (18): 1403-8, 1994. [PUBMED Abstract]
- Thune I, Brenn T, Lund E, et al.: Physical activity and the risk of breast cancer. N Engl J Med 336 (18): 1269-75, 1997. [PUBMED Abstract]
- Adams-Campbell LL, Rosenberg L, Rao RS, et al.: Strenuous physical activity and breast cancer risk in African-American women. J Natl Med Assoc 93 (7-8): 267-75, 2001 Jul-Aug. [PUBMED Abstract]
- Pike MC, Krailo MD, Henderson BE, et al.: 'Hormonal' risk factors, 'breast tissue age' and the age-incidence of breast cancer. Nature 303 (5920): 767-70, 1983. [PUBMED Abstract]
- Lambe M, Hsieh C, Trichopoulos D, et al.: Transient increase in the risk of breast cancer after giving birth. N Engl J Med 331 (1): 5-9, 1994. [PUBMED Abstract]
- Col: Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360 (9328): 187-95, 2002. [PUBMED Abstract]
- Cuzick J, Sestak I, Bonanni B, et al.: Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet 381 (9880): 1827-34, 2013. [PUBMED Abstract]
- Goss PE, Ingle JN, Alés-Martínez JE, et al.: Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 364 (25): 2381-91, 2011. [PUBMED Abstract]
- Cuzick J, Sestak I, Forbes JF, et al.: Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet 383 (9922): 1041-8, 2014. [PUBMED Abstract]
- Hartmann LC, Schaid DJ, Woods JE, et al.: Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 340 (2): 77-84, 1999. [PUBMED Abstract]
- Rebbeck TR, Levin AM, Eisen A, et al.: Breast cancer risk after bilateral prophylactic oophorectomy in BRCA1 mutation carriers. J Natl Cancer Inst 91 (17): 1475-9, 1999. [PUBMED Abstract]
- Kauff ND, Satagopan JM, Robson ME, et al.: Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 346 (21): 1609-15, 2002. [PUBMED Abstract]
- Rebbeck TR, Lynch HT, Neuhausen SL, et al.: Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 346 (21): 1616-22, 2002. [PUBMED Abstract]
- Kauff ND, Domchek SM, Friebel TM, et al.: Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. J Clin Oncol 26 (8): 1331-7, 2008. [PUBMED Abstract]
- Rosen PP, Groshen S, Kinne DW, et al.: Factors influencing prognosis in node-negative breast carcinoma: analysis of 767 T1N0M0/T2N0M0 patients with long-term follow-up. J Clin Oncol 11 (11): 2090-100, 1993. [PUBMED Abstract]
- Abbott A, Rueth N, Pappas-Varco S, et al.: Perceptions of contralateral breast cancer: an overestimation of risk. Ann Surg Oncol 18 (11): 3129-36, 2011. [PUBMED Abstract]
- Nichols HB, Berrington de González A, Lacey JV Jr, et al.: Declining incidence of contralateral breast cancer in the United States from 1975 to 2006. J Clin Oncol 29 (12): 1564-9, 2011. [PUBMED Abstract]
- Heron DE, Komarnicky LT, Hyslop T, et al.: Bilateral breast carcinoma: risk factors and outcomes for patients with synchronous and metachronous disease. Cancer 88 (12): 2739-50, 2000. [PUBMED Abstract]
- Graeser MK, Engel C, Rhiem K, et al.: Contralateral breast cancer risk in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 27 (35): 5887-92, 2009. [PUBMED Abstract]
- Garber JE, Golshan M: Contralateral breast cancer in BRCA1/BRCA2 mutation carriers: the story of the other side. J Clin Oncol 27 (35): 5862-4, 2009. [PUBMED Abstract]
- Lehman CD, Gatsonis C, Kuhl CK, et al.: MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 356 (13): 1295-303, 2007. [PUBMED Abstract]
- Solin LJ, Orel SG, Hwang WT, et al.: Relationship of breast magnetic resonance imaging to outcome after breast-conservation treatment with radiation for women with early-stage invasive breast carcinoma or ductal carcinoma in situ. J Clin Oncol 26 (3): 386-91, 2008. [PUBMED Abstract]
- Morrow M: Magnetic resonance imaging in the breast cancer patient: curb your enthusiasm. J Clin Oncol 26 (3): 352-3, 2008. [PUBMED Abstract]
- Simpson JF, Gray R, Dressler LG, et al.: Prognostic value of histologic grade and proliferative activity in axillary node-positive breast cancer: results from the Eastern Cooperative Oncology Group Companion Study, EST 4189. J Clin Oncol 18 (10): 2059-69, 2000. [PUBMED Abstract]
- Rosen PP, Groshen S, Kinne DW: Prognosis in T2N0M0 stage I breast carcinoma: a 20-year follow-up study. J Clin Oncol 9 (9): 1650-61, 1991. [PUBMED Abstract]
- Diab SG, Clark GM, Osborne CK, et al.: Tumor characteristics and clinical outcome of tubular and mucinous breast carcinomas. J Clin Oncol 17 (5): 1442-8, 1999. [PUBMED Abstract]
- Rakha EA, Lee AH, Evans AJ, et al.: Tubular carcinoma of the breast: further evidence to support its excellent prognosis. J Clin Oncol 28 (1): 99-104, 2010. [PUBMED Abstract]
- Sørlie T, Perou CM, Tibshirani R, et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98 (19): 10869-74, 2001. [PUBMED Abstract]
Breast Cancer Treatment (PDQ®)—Health Professional Version - National Cancer Institute
Breast Cancer Treatment (PDQ®)–Health Professional Version
SECTIONS
- General Information About Breast Cancer
- Histopathologic Classification of Breast Cancer
- Stage Information for Breast Cancer
- Early/Localized/Operable Breast Cancer
- Locally Advanced or Inflammatory Breast Cancer
- Locoregional Recurrent Breast Cancer
- Metastatic Breast Cancer
- Ductal Carcinoma In Situ
- Changes to This Summary (08/11/2016)
- About This PDQ Summary
- View All Sections
General Information About Breast Cancer
This summary discusses primary epithelial breast cancers in women. The breast is rarely affected by other tumors such as lymphomas, sarcomas, or melanomas. Refer to the following PDQ summaries for more information on these cancer types:
Breast cancer also affects men and children and may occur during pregnancy, although it is rare in these populations. Refer to the following PDQ summaries for more information:
Incidence and Mortality
Estimated new cases and deaths from breast cancer (women only) in the United States in 2016:[1]
- New cases: 246,660.
- Deaths: 40,450.
Breast cancer is the most common noncutaneous cancer in U.S. women, with an estimated 61,000 cases of in situ disease, 246,660 cases of invasive disease, and 40,450 deaths expected in 2016.[1] Thus, fewer than one of six women diagnosed with breast cancer die of the disease. By comparison, it is estimated that about 72,160 American women will die of lung cancer in 2016.[1] Men account for 1% of breast cancer cases and breast cancer deaths (refer to the Special Populations section in the PDQ summary on Breast Cancer Screening for more information).
Widespread adoption of screening increases breast cancer incidence in a given population and changes the characteristics of cancers detected, with increased incidence of lower-risk cancers, premalignant lesions, and ductal carcinoma in situ (DCIS). (Refer to the Ductal Carcinoma In Situ section in the Breast Cancer Diagnosis and Pathology section in the PDQ summary on Breast Cancer Screening for more information.) Population studies from the United States [2] and the United Kingdom [3] demonstrate an increase in DCIS and invasive breast cancer incidence since the 1970s, attributable to the widespread adoption of both postmenopausal hormone therapy and screening mammography. In the last decade, women have refrained from using postmenopausal hormones, and breast cancer incidence has declined, but not to the levels seen before the widespread use of screening mammography.[4]
Anatomy
Risk and Protective Factors
Increasing age is the most important risk factor for breast cancer.[2] Other risk factors for breast cancer include the following:
- Family health history.[5]
- Major inheritance susceptibility.[6-8]
- Alcohol intake.[14]
- Breast tissue density (mammographic).[15,16]
- Estrogen (endogenous):[17-20]
- Hormone therapy history:[24]
- Obesity.[29,30]
- Personal history of breast cancer.[31]
- Personal history of proliferative forms of benign breast disease.[32-38]
- Race.[39,40]
- Radiation exposure to the breast/chest.[41,42]
Age-specific risk estimates are available to help counsel and design screening strategies for women with a family history of breast cancer.[43,44]
Of all women with breast cancer, 5% to 10% may have a germline mutation of the genesBRCA1 and BRCA2.[45] Specific mutations of BRCA1 and BRCA2 are more common in women of Jewish ancestry.[46] The estimated lifetime risk of developing breast cancer for women with BRCA1 and BRCA2 mutations is 40% to 85%. Carriers with a history of breast cancer have an increased risk of contralateral disease that may be as high as 5% per year.[47] Male BRCA2 mutation carriers also have an increased risk of breast cancer.[48]
Mutations in either the BRCA1 or the BRCA2 gene also confer an increased risk of ovarian cancer [48,49] or other primary cancers.[48,49] Once a BRCA1 or BRCA2 mutation has been identified, other family members can be referred for genetic counseling and testing.[50-53] (Refer to the PDQ summaries on Genetics of Breast and Gynecologic Cancers; Breast Cancer Prevention; and Breast Cancer Screening for more information.)
(Refer to the PDQ summary on Breast Cancer Prevention for more information about factors that increase the risk of breast cancer.)
Protective factors and interventions to reduce the risk of female breast cancer include the following:
(Refer to the PDQ summary on Breast Cancer Prevention for more information about factors that decrease the risk of breast cancer.)
Screening
Clinical trials have established that screening asymptomatic women using mammography, with or without clinical breast examination, decreases breast cancer mortality. (Refer to the PDQ summary on Breast Cancer Screening for more information.)
Diagnosis
Patient evaluation
When breast cancer is suspected, patient management generally includes the following:
- Confirmation of the diagnosis.
- Evaluation of the stage of disease.
- Selection of therapy.
The following tests and procedures are used to diagnose breast cancer:
- Mammography.
- Ultrasound.
- Breast magnetic resonance imaging (MRI), if clinically indicated.
- Biopsy.
Contralateral disease
Pathologically, breast cancer can be a multicentric and bilateral disease. Bilateral disease is somewhat more common in patients with infiltrating lobular carcinoma. At 10 years after diagnosis, the risk of a primary breast cancer in the contralateral breast ranges from 3% to 10%, although endocrine therapy decreases that risk.[71-73] The development of a contralateral breast cancer is associated with an increased risk of distant recurrence.[74] When BRCA1/BRCA2 mutation carriers were diagnosed before age 40 years, the risk of a contralateral breast cancer reached nearly 50% in the ensuing 25 years.[75,76]
Patients who have breast cancer will undergo bilateral mammography at the time of diagnosis to rule out synchronous disease. To detect either recurrence in the ipsilateral breast in patients treated with breast-conserving surgery or a second primary cancer in the contralateral breast, patients will continue to have regular breast physical examinations and mammograms.
The role of MRI in screening the contralateral breast and monitoring women treated with breast-conserving therapy continues to evolve. Because an increased detection rate of mammographically occult disease has been demonstrated, the selective use of MRI for additional screening is occurring more frequently despite the absence of randomized, controlled data. Because only 25% of MRI-positive findings represent malignancy, pathologic confirmation before treatment is recommended. Whether this increased detection rate will translate into improved treatment outcome is unknown.[77-79]
Prognostic and Predictive Factors
Breast cancer is commonly treated by various combinations of surgery, radiation therapy, chemotherapy, and hormone therapy. Prognosis and selection of therapy may be influenced by the following clinical and pathology features (based on conventional histology and immunohistochemistry):[80]
- Menopausal status of the patient.
- Stage of the disease.
- Grade of the primary tumor.
- Estrogen receptor (ER) and progesterone receptor (PR) status of the tumor.
- Human epidermal growth factor type 2 receptor (HER2/neu) overexpression and/or amplification.
- Histologic type. Breast cancer is classified into a variety of histologic types, some of which have prognostic importance. Favorable histologic types include mucinous, medullary, and tubular carcinomas.[81-83]
The use of molecular profiling in breast cancer includes the following:[84]
- ER and PR status testing.
- HER2/neu receptor status testing.
- Gene profile testing by microarray assay or reverse transcription-polymerase chain reaction (e.g., MammaPrint, Oncotype DX).
On the basis of ER, PR, and HER2/neu results, breast cancer is classified as one of the following types:
- Hormone-receptor positive.
- HER2/neu positive.
- Triple negative (ER, PR, and HER2/neu negative).
ER, PR, and HER2 status are important in determining prognosis and in predicting response to endocrine and HER2-directed therapy. The American Society of Clinical Oncology/College of American Pathologists consensus panel has published guidelines to help standardize the performance, interpretation, and reporting of assays used to assess the ER/PR status by immunohistochemistry and HER2 status by immunohistochemistry andin situ hybridization.[85,86]
Gene profile tests include the following:
- MammaPrint: The first gene profile test to be approved by the U.S. Food and Drug Administration was the MammaPrint gene signature. Its prognostic utility primarily targets adjuvant therapy−decision making in women aged 61 years and younger with stage I/II lymph node–negative breast cancer 5 cm or smaller.[87-91] The MINDACTtrial (NCT00433589) will help determine if the assay should be used to decide whether adjuvant chemotherapy may benefit a patient.
- Oncotype DX: The Oncotype DX 21 gene assay is the gene profile test with the most extensive clinical validation thus far, albeit in a prospective–retrospective fashion. A 21-gene recurrence score (RS) is generated based on the level of expression of each of the 21 genes:
- RS <18: low risk.
- RS ≥18 and <31: intermediate-risk.
- RS ≥31: high risk.
The following trials describe the prognostic and predictive value of multigene assays:
- The prognostic ability of the Oncotype DX 21-gene assay was assessed in two randomized trials.
- The NSABP B-14 trial randomly assigned patients to tamoxifen or placebo; the results favoring tamoxifen changed clinical practice in the late 1980s.[92] Formalin-fixed, paraffin-embedded tissue was available for 668 patients. The 10-year distant recurrence risk for patients treated with tamoxifen was 7% for those with a low RS, 14% for those with an intermediate RS, and 31% for those with high RS (P < .001).[93]
- A community-based, case-control study examined the prognostic ability of the RS to predict breast cancer deaths after 10 years in a group of tamoxifen-treated patients and observed a similar prognostic pattern to that seen in patients from NSABP B-14.[94]
- Prediction of benefit from chemotherapy in patients with node-negative ER-positive breast cancer was assessed by the tamoxifen alone (n = 227) and the combination arms (n = 424) of the NSABP B-20 trial.[92] Patients in the NSABP B-20 trial were randomly assigned to receive tamoxifen alone or tamoxifen concurrently with methotrexate and 5-fluorouracil (MF) or cyclophosphamide with MF (CMF).[95]
- The 10-year distant disease-free survival (DFS) improved from 60% to 88% by adding chemotherapy to tamoxifen in the high-risk group, while no benefit was observed in the low RS group.[96]
- Similar findings were reported in the prospective-retrospective evaluation of Southwestern Oncology Group trial S8814 in lymph node-positive patients treated with tamoxifen with or without cyclophosphamide, doxorubicin, and fluorouracil (CAF).[97] However, the sample size in this analysis was small, follow-up was only 5 years, and the prognostic impact of having positive nodes needs to be taken into consideration.
- Of note, both analyses (NSABP B-20 and S8814) were underpowered for any conclusive predictive analysis among patients identified as having an intermediate RS.
- Results from the TAILORX trial (NCT00310180) may help provide recommendations for those with ER/PR-positive and node-negative disease with an intermediate RS. In this study, a low-risk score was defined as less than 11, intermediate score was 11 to 25, and high-risk score was greater than 25. These cut points differ from those described above.Patients in this study with a low-risk score were found to have very low rates of recurrence at 5 years with endocrine therapy.[98] Primary endpoint results from this study are awaited.
- Rate of invasive DFS was 93.8%.
- Rate of freedom from recurrence of breast cancer at a distant site was 99.3%.
- Rate of freedom from recurrence of breast cancer at a distant or local-regional site was 98.7%.
- Rate of overall survival was 98.0%.
Results from the RxPONDER trial (NCT01272037) will help to determine if there is a benefit from adjuvant chemotherapy in patients with ER-positive, node-positive early breast cancer treated with endocrine therapy, and a RS below 25.
Many other gene-based assays may guide treatment decisions in patients with early breast cancer (e.g., Predictor Analysis of Microarray 50 [PAM50] Risk of Recurrence [ROR] score, EndoPredict, Breast Cancer Index).
Although certain rare inherited mutations, such as those of BRCA1 and BRCA2, predispose women to develop breast cancer, prognostic data on BRCA1/BRCA2 mutation carriers who have developed breast cancer are conflicting. These women are at greater risk of developing contralateral breast cancer. (Refer to the Prognosis of BRCA1- and BRCA2-related breast cancer section of the PDQ Genetics of Breast and Gynecologic Cancerssummary for more information.)
Posttherapy Considerations
Hormone replacement therapy
After careful consideration, patients with severe symptoms may be treated with hormone replacement therapy. For more information, refer to the following PDQ summaries:
Related Summaries
Other PDQ summaries containing information related to breast cancer include the following:
References
- American Cancer Society: Cancer Facts and Figures 2016. Atlanta, Ga: American Cancer Society, 2016. Available online. Last accessed July 11, 2016.
- Altekruse SF, Kosary CL, Krapcho M, et al.: SEER Cancer Statistics Review, 1975-2007. Bethesda, Md: National Cancer Institute, 2010. Also available online. Last accessed June 28, 2016.
- Johnson A, Shekhdar J: Breast cancer incidence: what do the figures mean? J Eval Clin Pract 11 (1): 27-31, 2005. [PUBMED Abstract]
- Haas JS, Kaplan CP, Gerstenberger EP, et al.: Changes in the use of postmenopausal hormone therapy after the publication of clinical trial results. Ann Intern Med 140 (3): 184-8, 2004. [PUBMED Abstract]
- Colditz GA, Rosner BA, Speizer FE: Risk factors for breast cancer according to family history of breast cancer. For the Nurses' Health Study Research Group. J Natl Cancer Inst 88 (6): 365-71, 1996. [PUBMED Abstract]
- Colditz GA, Kaphingst KA, Hankinson SE, et al.: Family history and risk of breast cancer: nurses' health study. Breast Cancer Res Treat 133 (3): 1097-104, 2012. [PUBMED Abstract]
- Malone KE, Daling JR, Doody DR, et al.: Family history of breast cancer in relation to tumor characteristics and mortality in a population-based study of young women with invasive breast cancer. Cancer Epidemiol Biomarkers Prev 20 (12): 2560-71, 2011. [PUBMED Abstract]
- Cybulski C, Wokołorczyk D, Jakubowska A, et al.: Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J Clin Oncol 29 (28): 3747-52, 2011. [PUBMED Abstract]
- Goodwin PJ, Phillips KA, West DW, et al.: Breast cancer prognosis in BRCA1 and BRCA2 mutation carriers: an International Prospective Breast Cancer Family Registry population-based cohort study. J Clin Oncol 30 (1): 19-26, 2012. [PUBMED Abstract]
- Mavaddat N, Barrowdale D, Andrulis IL, et al.: Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev 21 (1): 134-47, 2012. [PUBMED Abstract]
- Miki Y, Swensen J, Shattuck-Eidens D, et al.: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266 (5182): 66-71, 1994. [PUBMED Abstract]
- Futreal PA, Liu Q, Shattuck-Eidens D, et al.: BRCA1 mutations in primary breast and ovarian carcinomas. Science 266 (5182): 120-2, 1994. [PUBMED Abstract]
- Wooster R, Neuhausen SL, Mangion J, et al.: Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265 (5181): 2088-90, 1994. [PUBMED Abstract]
- Hamajima N, Hirose K, Tajima K, et al.: Alcohol, tobacco and breast cancer--collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer 87 (11): 1234-45, 2002. [PUBMED Abstract]
- Boyd NF, Martin LJ, Rommens JM, et al.: Mammographic density: a heritable risk factor for breast cancer. Methods Mol Biol 472: 343-60, 2009. [PUBMED Abstract]
- McCormack VA, dos Santos Silva I: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15 (6): 1159-69, 2006. [PUBMED Abstract]
- Key TJ, Appleby PN, Reeves GK, et al.: Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer 105 (5): 709-22, 2011. [PUBMED Abstract]
- Kaaks R, Rinaldi S, Key TJ, et al.: Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer 12 (4): 1071-82, 2005. [PUBMED Abstract]
- Kaaks R, Berrino F, Key T, et al.: Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst 97 (10): 755-65, 2005. [PUBMED Abstract]
- Endogenous Hormones and Breast Cancer Collaborative Group: Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94 (8): 606-16, 2002. [PUBMED Abstract]
- Collaborative Group on Hormonal Factors in Breast Cancer: Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 13 (11): 1141-51, 2012. [PUBMED Abstract]
- Ritte R, Lukanova A, Tjønneland A, et al.: Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer: a cohort study. Int J Cancer 132 (11): 2619-29, 2013. [PUBMED Abstract]
- Kampert JB, Whittemore AS, Paffenbarger RS Jr: Combined effect of childbearing, menstrual events, and body size on age-specific breast cancer risk. Am J Epidemiol 128 (5): 962-79, 1988. [PUBMED Abstract]
- Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Collaborative Group on Hormonal Factors in Breast Cancer. Lancet 350 (9084): 1047-59, 1997. [PUBMED Abstract]
- Writing Group for the Women's Health Initiative Investigators: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 288 (3): 321-33, 2002. [PUBMED Abstract]
- Chlebowski RT, Anderson GL, Gass M, et al.: Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA 304 (15): 1684-92, 2010. [PUBMED Abstract]
- Chlebowski RT, Hendrix SL, Langer RD, et al.: Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women's Health Initiative Randomized Trial. JAMA 289 (24): 3243-53, 2003. [PUBMED Abstract]
- Chlebowski RT, Manson JE, Anderson GL, et al.: Estrogen plus progestin and breast cancer incidence and mortality in the Women's Health Initiative Observational Study. J Natl Cancer Inst 105 (8): 526-35, 2013. [PUBMED Abstract]
- Wolin KY, Carson K, Colditz GA: Obesity and cancer. Oncologist 15 (6): 556-65, 2010. [PUBMED Abstract]
- Morimoto LM, White E, Chen Z, et al.: Obesity, body size, and risk of postmenopausal breast cancer: the Women's Health Initiative (United States). Cancer Causes Control 13 (8): 741-51, 2002. [PUBMED Abstract]
- Kotsopoulos J, Chen WY, Gates MA, et al.: Risk factors for ductal and lobular breast cancer: results from the nurses' health study. Breast Cancer Res 12 (6): R106, 2010. [PUBMED Abstract]
- Goldacre MJ, Abisgold JD, Yeates DG, et al.: Benign breast disease and subsequent breast cancer: English record linkage studies. J Public Health (Oxf) 32 (4): 565-71, 2010. [PUBMED Abstract]
- Kabat GC, Jones JG, Olson N, et al.: A multi-center prospective cohort study of benign breast disease and risk of subsequent breast cancer. Cancer Causes Control 21 (6): 821-8, 2010. [PUBMED Abstract]
- Worsham MJ, Raju U, Lu M, et al.: Risk factors for breast cancer from benign breast disease in a diverse population. Breast Cancer Res Treat 118 (1): 1-7, 2009. [PUBMED Abstract]
- Pearlman MD, Griffin JL: Benign breast disease. Obstet Gynecol 116 (3): 747-58, 2010. [PUBMED Abstract]
- Vogel VG: Epidemiology, genetics, and risk evaluation of postmenopausal women at risk of breast cancer. Menopause 15 (4 Suppl): 782-9, 2008 Jul-Aug. [PUBMED Abstract]
- Degnim AC, Visscher DW, Berman HK, et al.: Stratification of breast cancer risk in women with atypia: a Mayo cohort study. J Clin Oncol 25 (19): 2671-7, 2007. [PUBMED Abstract]
- Worsham MJ, Abrams J, Raju U, et al.: Breast cancer incidence in a cohort of women with benign breast disease from a multiethnic, primary health care population. Breast J 13 (2): 115-21, 2007 Mar-Apr. [PUBMED Abstract]
- Razzaghi H, Troester MA, Gierach GL, et al.: Mammographic density and breast cancer risk in White and African American Women. Breast Cancer Res Treat 135 (2): 571-80, 2012. [PUBMED Abstract]
- Pfeiffer RM, Mitani A, Matsuno RK, et al.: Racial differences in breast cancer trends in the United States (2000-2004). J Natl Cancer Inst 100 (10): 751-2, 2008. [PUBMED Abstract]
- Andrieu N, Easton DF, Chang-Claude J, et al.: Effect of chest X-rays on the risk of breast cancer among BRCA1/2 mutation carriers in the international BRCA1/2 carrier cohort study: a report from the EMBRACE, GENEPSO, GEO-HEBON, and IBCCS Collaborators' Group. J Clin Oncol 24 (21): 3361-6, 2006. [PUBMED Abstract]
- Bhatia S, Robison LL, Oberlin O, et al.: Breast cancer and other second neoplasms after childhood Hodgkin's disease. N Engl J Med 334 (12): 745-51, 1996. [PUBMED Abstract]
- Claus EB, Risch N, Thompson WD: Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer 73 (3): 643-51, 1994. [PUBMED Abstract]
- Gail MH, Brinton LA, Byar DP, et al.: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81 (24): 1879-86, 1989. [PUBMED Abstract]
- Blackwood MA, Weber BL: BRCA1 and BRCA2: from molecular genetics to clinical medicine. J Clin Oncol 16 (5): 1969-77, 1998. [PUBMED Abstract]
- Offit K, Gilewski T, McGuire P, et al.: Germline BRCA1 185delAG mutations in Jewish women with breast cancer. Lancet 347 (9016): 1643-5, 1996. [PUBMED Abstract]
- Frank TS, Manley SA, Olopade OI, et al.: Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk. J Clin Oncol 16 (7): 2417-25, 1998. [PUBMED Abstract]
- Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J Natl Cancer Inst 91 (15): 1310-6, 1999. [PUBMED Abstract]
- Ford D, Easton DF, Bishop DT, et al.: Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 343 (8899): 692-5, 1994. [PUBMED Abstract]
- Biesecker BB, Boehnke M, Calzone K, et al.: Genetic counseling for families with inherited susceptibility to breast and ovarian cancer. JAMA 269 (15): 1970-4, 1993. [PUBMED Abstract]
- Berry DA, Parmigiani G, Sanchez J, et al.: Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history. J Natl Cancer Inst 89 (3): 227-38, 1997. [PUBMED Abstract]
- Hoskins KF, Stopfer JE, Calzone KA, et al.: Assessment and counseling for women with a family history of breast cancer. A guide for clinicians. JAMA 273 (7): 577-85, 1995. [PUBMED Abstract]
- Statement of the American Society of Clinical Oncology: genetic testing for cancer susceptibility, Adopted on February 20, 1996. J Clin Oncol 14 (5): 1730-6; discussion 1737-40, 1996. [PUBMED Abstract]
- Anderson GL, Limacher M, Assaf AR, et al.: Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA 291 (14): 1701-12, 2004. [PUBMED Abstract]
- LaCroix AZ, Chlebowski RT, Manson JE, et al.: Health outcomes after stopping conjugated equine estrogens among postmenopausal women with prior hysterectomy: a randomized controlled trial. JAMA 305 (13): 1305-14, 2011. [PUBMED Abstract]
- Anderson GL, Chlebowski RT, Aragaki AK, et al.: Conjugated equine oestrogen and breast cancer incidence and mortality in postmenopausal women with hysterectomy: extended follow-up of the Women's Health Initiative randomised placebo-controlled trial. Lancet Oncol 13 (5): 476-86, 2012. [PUBMED Abstract]
- Bernstein L, Henderson BE, Hanisch R, et al.: Physical exercise and reduced risk of breast cancer in young women. J Natl Cancer Inst 86 (18): 1403-8, 1994. [PUBMED Abstract]
- Thune I, Brenn T, Lund E, et al.: Physical activity and the risk of breast cancer. N Engl J Med 336 (18): 1269-75, 1997. [PUBMED Abstract]
- Adams-Campbell LL, Rosenberg L, Rao RS, et al.: Strenuous physical activity and breast cancer risk in African-American women. J Natl Med Assoc 93 (7-8): 267-75, 2001 Jul-Aug. [PUBMED Abstract]
- Pike MC, Krailo MD, Henderson BE, et al.: 'Hormonal' risk factors, 'breast tissue age' and the age-incidence of breast cancer. Nature 303 (5920): 767-70, 1983. [PUBMED Abstract]
- Lambe M, Hsieh C, Trichopoulos D, et al.: Transient increase in the risk of breast cancer after giving birth. N Engl J Med 331 (1): 5-9, 1994. [PUBMED Abstract]
- Col: Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360 (9328): 187-95, 2002. [PUBMED Abstract]
- Cuzick J, Sestak I, Bonanni B, et al.: Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet 381 (9880): 1827-34, 2013. [PUBMED Abstract]
- Goss PE, Ingle JN, Alés-Martínez JE, et al.: Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 364 (25): 2381-91, 2011. [PUBMED Abstract]
- Cuzick J, Sestak I, Forbes JF, et al.: Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet 383 (9922): 1041-8, 2014. [PUBMED Abstract]
- Hartmann LC, Schaid DJ, Woods JE, et al.: Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 340 (2): 77-84, 1999. [PUBMED Abstract]
- Rebbeck TR, Levin AM, Eisen A, et al.: Breast cancer risk after bilateral prophylactic oophorectomy in BRCA1 mutation carriers. J Natl Cancer Inst 91 (17): 1475-9, 1999. [PUBMED Abstract]
- Kauff ND, Satagopan JM, Robson ME, et al.: Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 346 (21): 1609-15, 2002. [PUBMED Abstract]
- Rebbeck TR, Lynch HT, Neuhausen SL, et al.: Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 346 (21): 1616-22, 2002. [PUBMED Abstract]
- Kauff ND, Domchek SM, Friebel TM, et al.: Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. J Clin Oncol 26 (8): 1331-7, 2008. [PUBMED Abstract]
- Rosen PP, Groshen S, Kinne DW, et al.: Factors influencing prognosis in node-negative breast carcinoma: analysis of 767 T1N0M0/T2N0M0 patients with long-term follow-up. J Clin Oncol 11 (11): 2090-100, 1993. [PUBMED Abstract]
- Abbott A, Rueth N, Pappas-Varco S, et al.: Perceptions of contralateral breast cancer: an overestimation of risk. Ann Surg Oncol 18 (11): 3129-36, 2011. [PUBMED Abstract]
- Nichols HB, Berrington de González A, Lacey JV Jr, et al.: Declining incidence of contralateral breast cancer in the United States from 1975 to 2006. J Clin Oncol 29 (12): 1564-9, 2011. [PUBMED Abstract]
- Heron DE, Komarnicky LT, Hyslop T, et al.: Bilateral breast carcinoma: risk factors and outcomes for patients with synchronous and metachronous disease. Cancer 88 (12): 2739-50, 2000. [PUBMED Abstract]
- Graeser MK, Engel C, Rhiem K, et al.: Contralateral breast cancer risk in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 27 (35): 5887-92, 2009. [PUBMED Abstract]
- Garber JE, Golshan M: Contralateral breast cancer in BRCA1/BRCA2 mutation carriers: the story of the other side. J Clin Oncol 27 (35): 5862-4, 2009. [PUBMED Abstract]
- Lehman CD, Gatsonis C, Kuhl CK, et al.: MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 356 (13): 1295-303, 2007. [PUBMED Abstract]
- Solin LJ, Orel SG, Hwang WT, et al.: Relationship of breast magnetic resonance imaging to outcome after breast-conservation treatment with radiation for women with early-stage invasive breast carcinoma or ductal carcinoma in situ. J Clin Oncol 26 (3): 386-91, 2008. [PUBMED Abstract]
- Morrow M: Magnetic resonance imaging in the breast cancer patient: curb your enthusiasm. J Clin Oncol 26 (3): 352-3, 2008. [PUBMED Abstract]
- Simpson JF, Gray R, Dressler LG, et al.: Prognostic value of histologic grade and proliferative activity in axillary node-positive breast cancer: results from the Eastern Cooperative Oncology Group Companion Study, EST 4189. J Clin Oncol 18 (10): 2059-69, 2000. [PUBMED Abstract]
- Rosen PP, Groshen S, Kinne DW: Prognosis in T2N0M0 stage I breast carcinoma: a 20-year follow-up study. J Clin Oncol 9 (9): 1650-61, 1991. [PUBMED Abstract]
- Diab SG, Clark GM, Osborne CK, et al.: Tumor characteristics and clinical outcome of tubular and mucinous breast carcinomas. J Clin Oncol 17 (5): 1442-8, 1999. [PUBMED Abstract]
- Rakha EA, Lee AH, Evans AJ, et al.: Tubular carcinoma of the breast: further evidence to support its excellent prognosis. J Clin Oncol 28 (1): 99-104, 2010. [PUBMED Abstract]
- Sørlie T, Perou CM, Tibshirani R, et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98 (19): 10869-74, 2001. [PUBMED Abstract]
- Wolff AC, Hammond ME, Hicks DG, et al.: Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31 (31): 3997-4013, 2013. [PUBMED Abstract]
- Hammond ME, Hayes DF, Dowsett M, et al.: American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med 134 (6): 907-22, 2010. [PUBMED Abstract]
- Buyse M, Loi S, van't Veer L, et al.: Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98 (17): 1183-92, 2006. [PUBMED Abstract]
- Wittner BS, Sgroi DC, Ryan PD, et al.: Analysis of the MammaPrint breast cancer assay in a predominantly postmenopausal cohort. Clin Cancer Res 14 (10): 2988-93, 2008. [PUBMED Abstract]
- Mook S, Knauer M, Bueno-de-Mesquita JM, et al.: Metastatic potential of T1 breast cancer can be predicted by the 70-gene MammaPrint signature. Ann Surg Oncol 17 (5): 1406-13, 2010. [PUBMED Abstract]
- Ishitobi M, Goranova TE, Komoike Y, et al.: Clinical utility of the 70-gene MammaPrint profile in a Japanese population. Jpn J Clin Oncol 40 (6): 508-12, 2010. [PUBMED Abstract]
- Knauer M, Mook S, Rutgers EJ, et al.: The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 120 (3): 655-61, 2010. [PUBMED Abstract]
- Fisher B, Jeong JH, Bryant J, et al.: Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Lancet 364 (9437): 858-68, 2004. [PUBMED Abstract]
- Paik S, Shak S, Tang G, et al.: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351 (27): 2817-26, 2004. [PUBMED Abstract]
- Habel LA, Shak S, Jacobs MK, et al.: A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res 8 (3): R25, 2006. [PUBMED Abstract]
- Mamounas EP, Tang G, Fisher B, et al.: Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol 28 (10): 1677-83, 2010. [PUBMED Abstract]
- Paik S, Tang G, Shak S, et al.: Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24 (23): 3726-34, 2006. [PUBMED Abstract]
- Albain KS, Barlow WE, Shak S, et al.: Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11 (1): 55-65, 2010. [PUBMED Abstract]
- Sparano JA, Gray RJ, Makower DF, et al.: Prospective Validation of a 21-Gene Expression Assay in Breast Cancer. N Engl J Med 373 (21): 2005-14, 2015. [PUBMED Abstract]
No hay comentarios:
Publicar un comentario