miércoles, 1 de mayo de 2019

Breast Cancer Prevention (PDQ®) 3/4 —Health Professional Version - National Cancer Institute

Breast Cancer Prevention (PDQ®)—Health Professional Version - National Cancer Institute

National Cancer Institute

Breast Cancer Prevention (PDQ®)–Health Professional Version


Prophylactic mastectomy

A retrospective cohort study evaluated the impact of bilateral prophylactic mastectomy on breast cancer incidence among women at high and moderate risk on the basis of family history.[120BRCA mutation status was not known. Subcutaneous, rather than total, mastectomy was performed in 90% of these women. After a median follow-up of 14 years postsurgery, the risk reduction for the 425 moderate-risk women was 89%; for the 214 high-risk women, it was 90% to 94%, depending on the method used to calculate expected rates of breast cancer. The risk reduction for breast cancer mortality was 100% for moderate-risk women and 81% for high-risk women. Because the study used family history as a risk indicator rather than genetic testing, breast cancer risk may be overestimated.
The rate of bilateral mastectomy among women with unilateral disease (DCIS and early-stage invasive breast cancer) was reported to have increased from 1.9% in 1998 to 11.2% in 2011 based on data from the U.S. National Cancer Data Base.[121]
No studies have been done on the benefits of prophylactic mastectomy in the average-risk population to prevent contralateral breast cancer in women with an ipsilateral breast cancer.

Prophylactic oophorectomy

Ovarian ablation and oophorectomy are associated with decreased breast cancer risk in normal women and in women with increased risk resulting from thoracic irradiation. (Refer to the Endogenous estrogen section in the Description of the Evidence section of this summary for more information.) Observational studies of women with high breast cancer risk resulting from BRCA1 or BRCA2 gene mutations showed that prophylactic oophorectomy to prevent ovarian cancer was also associated with a 50% decrease in breast cancer incidence.[122-124] These studies are confounded by selection bias, family relationships between patients and controls, indications for oophorectomy, and inadequate information about hormone use. A prospective cohort study had similar findings, with a greater breast cancer risk reduction in BRCA2 mutation carriers than in BRCA1 carriers.[125]

Factors and Interventions With Inadequate Evidence of an Association

Hormonal contraceptives

Oral contraceptives have been associated with a small increased risk of breast cancer in current users that diminishes over time.[126] A well-conducted case-control study did not observe an association between breast cancer risk and oral contraceptive use for every use, duration of use, or recency of use.[127]
Another case-control study found no increased risk of breast cancer associated with the use of injectable or implantable progestin-only contraceptives in women aged 35 to 64 years.[128]
A nationwide prospective cohort study in Denmark found that women who currently or recently used contemporary hormonal contraceptives had a higher risk of breast cancer than did women who had never used hormonal contraceptives. Moreover, the risk of breast cancer increased with longer duration of hormonal contraceptive use. However, in absolute terms, the effect of oral contraceptives on breast cancer risk was very small. Thus, approximately one extra case of breast cancer would be expected for every 7,690 women using hormonal contraception for 1 year.[129]

Environmental factors

Occupational, environmental, or chemical exposures have been proposed as causes of breast cancer. Although some findings suggest that organochlorine exposures, such as those associated with insecticides, might be associated with an increase in breast cancer risk,[130,131] other case-control and nested case-control studies do not.[132-137] Studies reporting positive associations have been inconsistent in the identification of responsible organochlorines. Some of these substances have weak estrogenic effects, but their effect on breast cancer risk remains unproven. The use of dichloro-diphenyl-trichloroethane was banned in the United States in 1972, and the production of polychlorinated biphenyls was stopped in 1977.

Factors and Interventions With Adequate Evidence of Little or No Association

Abortion

Abortion has been proposed as a risk factor for breast cancer. Findings from observational studies have varied; some studies showed an association, while other studies did not. Observational studies that support this association were less rigorous and potentially biased because of differential recall by women on a socially sensitive issue.[138-141] For example, the impact of recall or reporting bias was demonstrated in a study that compared regions with different social attitudes on abortion.[142] The Committee on Gynecologic Practice of the American College of Obstetricians and Gynecologists has concluded that “more rigorous recent studies demonstrate no causal relationship between induced abortion and a subsequent increase in breast cancer risk.”[143] Studies that used prospectively recorded data regarding abortion, thereby avoiding recall bias, largely showed no association with the subsequent development of breast cancer.[144-149]

Diet

Any effect of dietary modifications on breast cancer would likely depend on the type of modification. However, there is little evidence that dietary modifications of any kind have an impact on the incidence of breast cancer.
There are very few randomized trials in humans comparing cancer incidence for different diets. Most studies are observational—including post hoc analyses of randomized trials—and are subject to biases that may be so large as to render the observation difficult to interpret. In particular, p-values and CIs do not have the same interpretation as when calculated for the primary endpoint in a randomized trial.
A summary of ecological studies published before 1975 showed a positive correlation between international age-adjusted breast cancer mortality rates and the estimated per capita consumption of dietary fat.[150] Results of case-control studies have been mixed. Twenty years later, a pooled analysis of results from seven cohort studies found no association between total dietary fat intake and breast cancer risk.[151]
A randomized, controlled, dietary modification study was undertaken among 48,835 postmenopausal women aged 50 to 79 years who were also enrolled in the WHI. The intervention promoted a goal of reducing total fat intake by 20% by increasing vegetable, fruit, and grain consumption. The intervention group reduced fat intake by approximately 10% for more than 8.1 years of follow-up, resulting in lower estradiol and gamma-tocopherol levels, but no persistent weight loss. The incidence of invasive breast cancer was numerically, but not statistically lower in the intervention group, with an HR of 0.91 (95% CI, 0.83–1.01).[152] There was no difference in all-cause mortality, overall mortality, or the incidence of cardiovascular events.[153]
With regard to fruit and vegetable intake, a pooled analysis of eight cohort studies including more than 350,000 women with 7,377 incident breast cancers showed little or no association for various assumed statistical models.[154]
The Women's Healthy Eating and Living Randomized Trial [155] examined the effect of diet on the incidence of new primary breast cancers in women previously diagnosed with breast cancer. More than 3,000 women were enrolled and randomly assigned to an intense regimen of increased fruit and vegetable intake, increased fiber intake, and decreased fat intake, or a comparison group receiving printed materials on the “5-A-Day” dietary guidelines. After a mean of 7.3 years of follow-up, there was no reduction in new primary cancers, no difference in disease-free survival, and no difference in overall survival.
A randomized trial in Spain [156] assigned participants who were at high cardiovascular risk to one of three diets: a Mediterranean diet supplemented with extra-virgin olive oil, a Mediterranean diet supplemented with mixed nuts, or a control Mediterranean diet (counseling to reduce dietary fat). The investigators reported a statistically significant reduction in major cardiovascular events, which was the trial’s primary endpoint.[157] The investigators also addressed other endpoints, including the incidence of breast cancer, although it is not specified how many were examined. Based on only 35 cases of invasive breast cancer (as compared with 288 major cardiovascular events), the respective rates of breast cancer were 8 of 1,476 (0.54%); 10 of 1,285 (0.78%); and 17 of 1,391 (1.22%) with respective average follow-up durations of 4.8, 4.3, and 4.2 years. The circumstances of the study make it difficult to determine the statistical significance of these differences.

Vitamins

The potential role of specific micronutrients for breast cancer risk reduction has been examined in clinical trials, with cardiovascular disease and cancer as outcomes. The Women’s Health Study, a randomized trial with 39,876 women, found no difference in breast cancer incidence at 2 years between women assigned to take either beta carotene or placebo.[158] In this same study, no overall effect on cancer was seen in women taking 600 IU of vitamin E every other day.[159] The Women’s Antioxidant Cardiovascular Study examined 8,171 women for incidence of total cancer and invasive breast cancer and found no effect for vitamin C, vitamin E, or beta carotene.[160] Two years later, a subset of 5,442 women were randomly assigned to take 1.5 mg of folic acid, 50 mg of vitamin B6, and 1 mg of vitamin B12, or placebo. After 7.3 years, there was no difference in the incidence of total invasive cancer or invasive breast cancer.[161]
Fenretinide [162] is a vitamin A analog that has been shown to reduce breast carcinogenesis in preclinical studies. A phase III Italian trial compared the efficacy of a 5-year intervention with fenretinide versus no treatment in 2,972 women, aged 30 to 70 years, with surgically removed stage I breast cancer or DCIS. At a median observation time of 97 months, there were no statistically significant differences in the occurrence of contralateral breast cancer (P = .642), ipsilateral breast cancer (= .177), incidence of distant metastases, nonbreast malignancies, and all-cause mortality.[163]

Active and passive cigarette smoking

The potential role of active cigarette smoking in the etiology of breast cancer has been studied for more than three decades, with no clear-cut evidence of an association.[164] Since the mid-1990s, studies of cigarette smoking and breast cancer have more carefully accounted for secondhand smoke exposure.[164,165] A recent meta-analysis suggests that there is no overall association between passive smoking and breast cancer and that study methodology (ascertainment of exposure after breast cancer diagnosis) may be responsible for the apparent risk associations seen in some studies.[166]

Underarm deodorants/antiperspirants

Despite warnings to women in lay publications that underarm deodorants and antiperspirants cause breast cancer, there is no evidence to support these concerns. A study based on interviews with 813 women who had breast cancer and 793 controls found no association between the risk of breast cancer and the use of antiperspirants, the use of deodorants, or the use of blade razors before these products were applied.[167] In contrast, a study of 437 breast cancer survivors found that women who used antiperspirants/deodorants and shaved their underarms more frequently had cancer diagnosed at a significantly younger age. A possible explanation for this finding is that these women had an earlier menarche or higher levels of endogenous hormones, both known to be risk factors for breast cancer and to increase body hair.[168]

Statins

Two well-conducted meta-analyses of RCTs [169] and RCTs plus observational studies [170] found no evidence that statin use either increases or decreases the risk of breast cancer.

Bisphosphonates

Oral and intravenous bisphosphonates for the treatment of hypercalcemia and osteoporosis have been studied for a possible beneficial effect on breast cancer prevention. Initial observational studies suggested that women who used these drugs for durations of approximately 1 to 4 years had a lower incidence of breast cancer.[171-174] These findings are confounded by the fact that women with osteoporosis have lower breast cancer risk than those with normal bone density. Additional evidence came from studies of women with a breast cancer diagnosis; the use of these drugs was associated with fewer new contralateral cancers.[175] With this background, two large randomized placebo-controlled trials were done. The Fracture Intervention Trial (FIT) treated 6,194 postmenopausal osteopenic women with either alendronate or placebo and found no difference at 3.8 years in breast cancer incidence, with incidence of 1.8% and 1.5%, respectively (HR, 1.24; CI, 0.84–1.83). The Health Outcomes and Reduced Incidence With Zoledronic Acid Once Yearly-Pivotal Fracture Trial (HORIZON-PRT) examined 7,580 postmenopausal osteoporotic women with either intravenous zoledronate or placebo and found no difference at 2.8 years in breast cancer incidence, with incidence of 0.8% and 0.9%, respectively (HR, 1.15; CI, 0.7–1.89).[176]

Working night shifts

In 2007, the World Health Organization’s International Agency for Research on Cancer (IARC) classified shift work that involves circadian disruption as a probable breast carcinogen. The principal evidence was from animal studies. There was limited evidence from human studies at the time.[177] In 2013, a meta-analysis of 15 epidemiologic studies concluded that there was weak evidence of an increased incidence of breast cancer among women who had ever worked night shifts.[178] In 2016, the results from three recent prospective studies from the United Kingdom, involving nearly 800,000 women, were combined with results from seven other prospective studies and showed no evidence of any association between breast cancer incidence and night shift work. In particular, the confidence intervals for the incidence rate ratios were narrow, even for 20 years or more of night shift work (rate ratio, 1.01; 95% CI, 0.93–1.10). These results exclude a moderate association of breast cancer incidence with long duration of night shift work.[179]
References
  1. American Cancer Society: Cancer Facts and Figures 2019. Atlanta, Ga: American Cancer Society, 2019. Available online. Last accessed January 23, 2019.
  2. Howlader N, Noone AM, Krapcho M, et al., eds.: SEER Cancer Statistics Review, 1975-2012. Bethesda, Md: National Cancer Institute, 2015. Also available online. Last accessed January 31, 2019.
  3. Altekruse SF, Kosary CL, Krapcho M, et al.: SEER Cancer Statistics Review, 1975-2007. Bethesda, Md: National Cancer Institute, 2010. Also available online. Last accessed January 31, 2019.
  4. American Cancer Society: Cancer Facts and Figures 2018. Atlanta, Ga: American Cancer Society, 2018. Available online. Last accessed March 14, 2019.
  5. Pfeiffer RM, Mitani A, Matsuno RK, et al.: Racial differences in breast cancer trends in the United States (2000-2004). J Natl Cancer Inst 100 (10): 751-2, 2008. [PUBMED Abstract]
  6. Boone CW, Kelloff GJ, Freedman LS: Intraepithelial and postinvasive neoplasia as a stochastic continuum of clonal evolution, and its relationship to mechanisms of chemopreventive drug action. J Cell Biochem Suppl 17G: 14-25, 1993. [PUBMED Abstract]
  7. Kelloff GJ, Boone CW, Steele VE, et al.: Progress in cancer chemoprevention: perspectives on agent selection and short-term clinical intervention trials. Cancer Res 54 (7 Suppl): 2015s-2024s, 1994. [PUBMED Abstract]
  8. Knabbe C, Lippman ME, Wakefield LM, et al.: Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48 (3): 417-28, 1987. [PUBMED Abstract]
  9. Parkin DM: Cancers of the breast, endometrium and ovary: geographic correlations. Eur J Cancer Clin Oncol 25 (12): 1917-25, 1989. [PUBMED Abstract]
  10. Dunn JE Jr: Breast cancer among American Japanese in the San Francisco Bay area. Natl Cancer Inst Monogr 47: 157-60, 1977. [PUBMED Abstract]
  11. Kliewer EV, Smith KR: Breast cancer mortality among immigrants in Australia and Canada. J Natl Cancer Inst 87 (15): 1154-61, 1995. [PUBMED Abstract]
  12. Brinton LA, Schairer C, Hoover RN, et al.: Menstrual factors and risk of breast cancer. Cancer Invest 6 (3): 245-54, 1988. [PUBMED Abstract]
  13. Collaborative Group on Hormonal Factors in Breast Cancer: Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 13 (11): 1141-51, 2012. [PUBMED Abstract]
  14. Ritte R, Lukanova A, Tjønneland A, et al.: Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer: a cohort study. Int J Cancer 132 (11): 2619-29, 2013. [PUBMED Abstract]
  15. Endogenous Hormones and Breast Cancer Collaborative Group: Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94 (8): 606-16, 2002. [PUBMED Abstract]
  16. Key TJ, Appleby PN, Reeves GK, et al.: Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer 105 (5): 709-22, 2011. [PUBMED Abstract]
  17. Kaaks R, Rinaldi S, Key TJ, et al.: Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer 12 (4): 1071-82, 2005. [PUBMED Abstract]
  18. Kaaks R, Berrino F, Key T, et al.: Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst 97 (10): 755-65, 2005. [PUBMED Abstract]
  19. Smith PG, Doll R: Late effects of x irradiation in patients treated for metropathia haemorrhagica. Br J Radiol 49 (579): 224-32, 1976. [PUBMED Abstract]
  20. Trichopoulos D, MacMahon B, Cole P: Menopause and breast cancer risk. J Natl Cancer Inst 48 (3): 605-13, 1972. [PUBMED Abstract]
  21. Feinleib M: Breast cancer and artificial menopause: a cohort study. J Natl Cancer Inst 41 (2): 315-29, 1968. [PUBMED Abstract]
  22. Kampert JB, Whittemore AS, Paffenbarger RS Jr: Combined effect of childbearing, menstrual events, and body size on age-specific breast cancer risk. Am J Epidemiol 128 (5): 962-79, 1988. [PUBMED Abstract]
  23. Hirayama T, Wynder EL: A study of the epidemiology of cancer of the breast. II. The influence of hysterectomy. Cancer 15: 28-38, 1962 Jan-Feb. [PUBMED Abstract]
  24. Colditz GA, Kaphingst KA, Hankinson SE, et al.: Family history and risk of breast cancer: nurses' health study. Breast Cancer Res Treat 133 (3): 1097-104, 2012. [PUBMED Abstract]
  25. Miki Y, Swensen J, Shattuck-Eidens D, et al.: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266 (5182): 66-71, 1994. [PUBMED Abstract]
  26. Futreal PA, Liu Q, Shattuck-Eidens D, et al.: BRCA1 mutations in primary breast and ovarian carcinomas. Science 266 (5182): 120-2, 1994. [PUBMED Abstract]
  27. Wooster R, Neuhausen SL, Mangion J, et al.: Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265 (5181): 2088-90, 1994. [PUBMED Abstract]
  28. Kuchenbaecker KB, Hopper JL, Barnes DR, et al.: Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 317 (23): 2402-2416, 2017. [PUBMED Abstract]
  29. Antoniou A, Pharoah PD, Narod S, et al.: Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72 (5): 1117-30, 2003. [PUBMED Abstract]
  30. Chen S, Parmigiani G: Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25 (11): 1329-33, 2007. [PUBMED Abstract]
  31. National Cancer Institute: SEER Stat Fact Sheets: Female Breast Cancer. Bethesda, MD: National Cancer Institute. Available online. Last accessed March 13, 2019.
  32. Swift M, Morrell D, Massey RB, et al.: Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325 (26): 1831-6, 1991. [PUBMED Abstract]
  33. Cybulski C, Wokołorczyk D, Jakubowska A, et al.: Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J Clin Oncol 29 (28): 3747-52, 2011. [PUBMED Abstract]
  34. Boyd NF, Guo H, Martin LJ, et al.: Mammographic density and the risk and detection of breast cancer. N Engl J Med 356 (3): 227-36, 2007. [PUBMED Abstract]
  35. Razzaghi H, Troester MA, Gierach GL, et al.: Mammographic density and breast cancer risk in White and African American Women. Breast Cancer Res Treat 135 (2): 571-80, 2012. [PUBMED Abstract]
  36. McCormack VA, dos Santos Silva I: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15 (6): 1159-69, 2006. [PUBMED Abstract]
  37. Gierach GL, Ichikawa L, Kerlikowske K, et al.: Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst 104 (16): 1218-27, 2012. [PUBMED Abstract]
  38. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Collaborative Group on Hormonal Factors in Breast Cancer. Lancet 350 (9084): 1047-59, 1997. [PUBMED Abstract]
  39. Hulley S, Furberg C, Barrett-Connor E, et al.: Noncardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II). JAMA 288 (1): 58-66, 2002. [PUBMED Abstract]
  40. Writing Group for the Women's Health Initiative Investigators: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 288 (3): 321-33, 2002. [PUBMED Abstract]
  41. Chlebowski RT, Anderson GL, Gass M, et al.: Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA 304 (15): 1684-92, 2010. [PUBMED Abstract]
  42. Chlebowski RT, Hendrix SL, Langer RD, et al.: Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women's Health Initiative Randomized Trial. JAMA 289 (24): 3243-53, 2003. [PUBMED Abstract]
  43. Chlebowski RT, Manson JE, Anderson GL, et al.: Estrogen plus progestin and breast cancer incidence and mortality in the Women's Health Initiative Observational Study. J Natl Cancer Inst 105 (8): 526-35, 2013. [PUBMED Abstract]
  44. Anderson GL, Limacher M, Assaf AR, et al.: Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA 291 (14): 1701-12, 2004. [PUBMED Abstract]
  45. LaCroix AZ, Chlebowski RT, Manson JE, et al.: Health outcomes after stopping conjugated equine estrogens among postmenopausal women with prior hysterectomy: a randomized controlled trial. JAMA 305 (13): 1305-14, 2011. [PUBMED Abstract]
  46. Anderson GL, Chlebowski RT, Aragaki AK, et al.: Conjugated equine oestrogen and breast cancer incidence and mortality in postmenopausal women with hysterectomy: extended follow-up of the Women's Health Initiative randomised placebo-controlled trial. Lancet Oncol 13 (5): 476-86, 2012. [PUBMED Abstract]
  47. Schierbeck LL, Rejnmark L, Tofteng CL, et al.: Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomised trial. BMJ 345: e6409, 2012. [PUBMED Abstract]
  48. Beral V, Reeves G, Bull D, et al.: Breast cancer risk in relation to the interval between menopause and starting hormone therapy. J Natl Cancer Inst 103 (4): 296-305, 2011. [PUBMED Abstract]
  49. Li CI, Malone KE, Porter PL, et al.: Relationship between long durations and different regimens of hormone therapy and risk of breast cancer. JAMA 289 (24): 3254-63, 2003. [PUBMED Abstract]
  50. Chlebowski RT, Anderson GL: The influence of time from menopause and mammography on hormone therapy-related breast cancer risk assessment. J Natl Cancer Inst 103 (4): 284-5, 2011. [PUBMED Abstract]
  51. Prentice RL, Chlebowski RT, Stefanick ML, et al.: Conjugated equine estrogens and breast cancer risk in the Women's Health Initiative clinical trial and observational study. Am J Epidemiol 167 (12): 1407-15, 2008. [PUBMED Abstract]
  52. Chlebowski RT, Kuller LH, Prentice RL, et al.: Breast cancer after use of estrogen plus progestin in postmenopausal women. N Engl J Med 360 (6): 573-87, 2009. [PUBMED Abstract]
  53. Cronin KA, Ravdin PM, Edwards BK: Sustained lower rates of breast cancer in the United States. Breast Cancer Res Treat 117 (1): 223-4, 2009. [PUBMED Abstract]
  54. Ravdin PM, Cronin KA, Howlader N, et al.: The decrease in breast-cancer incidence in 2003 in the United States. N Engl J Med 356 (16): 1670-4, 2007. [PUBMED Abstract]
  55. Parkin DM: Is the recent fall in incidence of post-menopausal breast cancer in UK related to changes in use of hormone replacement therapy? Eur J Cancer 45 (9): 1649-53, 2009. [PUBMED Abstract]
  56. Lambe M, Wigertz A, Holmqvist M, et al.: Reductions in use of hormone replacement therapy: effects on Swedish breast cancer incidence trends only seen after several years. Breast Cancer Res Treat 121 (3): 679-83, 2010. [PUBMED Abstract]
  57. Renard F, Vankrunkelsven P, Van Eycken L, et al.: Decline in breast cancer incidence in the Flemish region of Belgium after a decline in hormonal replacement therapy. Ann Oncol 21 (12): 2356-60, 2010. [PUBMED Abstract]
  58. Farhat GN, Walker R, Buist DS, et al.: Changes in invasive breast cancer and ductal carcinoma in situ rates in relation to the decline in hormone therapy use. J Clin Oncol 28 (35): 5140-6, 2010. [PUBMED Abstract]
  59. DeSantis C, Howlader N, Cronin KA, et al.: Breast cancer incidence rates in U.S. women are no longer declining. Cancer Epidemiol Biomarkers Prev 20 (5): 733-9, 2011. [PUBMED Abstract]
  60. John EM, Kelsey JL: Radiation and other environmental exposures and breast cancer. Epidemiol Rev 15 (1): 157-62, 1993. [PUBMED Abstract]
  61. Evans JS, Wennberg JE, McNeil BJ: The influence of diagnostic radiography on the incidence of breast cancer and leukemia. N Engl J Med 315 (13): 810-5, 1986. [PUBMED Abstract]
  62. Andrieu N, Easton DF, Chang-Claude J, et al.: Effect of chest X-rays on the risk of breast cancer among BRCA1/2 mutation carriers in the international BRCA1/2 carrier cohort study: a report from the EMBRACE, GENEPSO, GEO-HEBON, and IBCCS Collaborators' Group. J Clin Oncol 24 (21): 3361-6, 2006. [PUBMED Abstract]
  63. Bhatia S, Robison LL, Oberlin O, et al.: Breast cancer and other second neoplasms after childhood Hodgkin's disease. N Engl J Med 334 (12): 745-51, 1996. [PUBMED Abstract]
  64. Hancock SL, Tucker MA, Hoppe RT: Breast cancer after treatment of Hodgkin's disease. J Natl Cancer Inst 85 (1): 25-31, 1993. [PUBMED Abstract]
  65. Travis LB, Hill DA, Dores GM, et al.: Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. JAMA 290 (4): 465-75, 2003. [PUBMED Abstract]
  66. Sankila R, Garwicz S, Olsen JH, et al.: Risk of subsequent malignant neoplasms among 1,641 Hodgkin's disease patients diagnosed in childhood and adolescence: a population-based cohort study in the five Nordic countries. Association of the Nordic Cancer Registries and the Nordic Society of Pediatric Hematology and Oncology. J Clin Oncol 14 (5): 1442-6, 1996. [PUBMED Abstract]
  67. van Leeuwen FE, Klokman WJ, Stovall M, et al.: Roles of radiation dose, chemotherapy, and hormonal factors in breast cancer following Hodgkin's disease. J Natl Cancer Inst 95 (13): 971-80, 2003. [PUBMED Abstract]
  68. Obedian E, Fischer DB, Haffty BG: Second malignancies after treatment of early-stage breast cancer: lumpectomy and radiation therapy versus mastectomy. J Clin Oncol 18 (12): 2406-12, 2000. [PUBMED Abstract]
  69. Fisher B, Anderson S, Bryant J, et al.: Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347 (16): 1233-41, 2002. [PUBMED Abstract]
  70. Veronesi U, Cascinelli N, Mariani L, et al.: Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 347 (16): 1227-32, 2002. [PUBMED Abstract]
  71. Fisher B, Jeong JH, Anderson S, et al.: Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N Engl J Med 347 (8): 567-75, 2002. [PUBMED Abstract]
  72. Morimoto LM, White E, Chen Z, et al.: Obesity, body size, and risk of postmenopausal breast cancer: the Women's Health Initiative (United States). Cancer Causes Control 13 (8): 741-51, 2002. [PUBMED Abstract]
  73. Wolin KY, Carson K, Colditz GA: Obesity and cancer. Oncologist 15 (6): 556-65, 2010. [PUBMED Abstract]
  74. Lawlor DA, Smith GD, Ebrahim S: Hyperinsulinaemia and increased risk of breast cancer: findings from the British Women's Heart and Health Study. Cancer Causes Control 15 (3): 267-75, 2004. [PUBMED Abstract]
  75. Hamajima N, Hirose K, Tajima K, et al.: Alcohol, tobacco and breast cancer--collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer 87 (11): 1234-45, 2002. [PUBMED Abstract]
  76. Pike MC, Krailo MD, Henderson BE, et al.: 'Hormonal' risk factors, 'breast tissue age' and the age-incidence of breast cancer. Nature 303 (5920): 767-70, 1983. [PUBMED Abstract]
  77. Lambe M, Hsieh C, Trichopoulos D, et al.: Transient increase in the risk of breast cancer after giving birth. N Engl J Med 331 (1): 5-9, 1994. [PUBMED Abstract]
  78. Henderson BE, Pike MC, Ross RK, et al.: Epidemiology and risk factors. In: Bonadonna G, ed.: Breast Cancer: Diagnosis and Management. Chichester, NY: John Wiley & Sons, 1984, pp 15-33.
  79. Gail MH, Brinton LA, Byar DP, et al.: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81 (24): 1879-86, 1989. [PUBMED Abstract]
  80. Nichols HB, Schoemaker MJ, Cai J, et al.: Breast Cancer Risk After Recent Childbirth: A Pooled Analysis of 15 Prospective Studies. Ann Intern Med : , 2018. [PUBMED Abstract]
  81. Col: Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360 (9328): 187-95, 2002. [PUBMED Abstract]
  82. Furberg H, Newman B, Moorman P, et al.: Lactation and breast cancer risk. Int J Epidemiol 28 (3): 396-402, 1999. [PUBMED Abstract]
  83. Bernstein L, Henderson BE, Hanisch R, et al.: Physical exercise and reduced risk of breast cancer in young women. J Natl Cancer Inst 86 (18): 1403-8, 1994. [PUBMED Abstract]
  84. Friedenreich CM: Physical activity and cancer prevention: from observational to intervention research. Cancer Epidemiol Biomarkers Prev 10 (4): 287-301, 2001. [PUBMED Abstract]
  85. Thune I, Brenn T, Lund E, et al.: Physical activity and the risk of breast cancer. N Engl J Med 336 (18): 1269-75, 1997. [PUBMED Abstract]
  86. Adams-Campbell LL, Rosenberg L, Rao RS, et al.: Strenuous physical activity and breast cancer risk in African-American women. J Natl Med Assoc 93 (7-8): 267-75, 2001 Jul-Aug. [PUBMED Abstract]
  87. Nayfield SG, Karp JE, Ford LG, et al.: Potential role of tamoxifen in prevention of breast cancer. J Natl Cancer Inst 83 (20): 1450-9, 1991. [PUBMED Abstract]
  88. Love RR, Barden HS, Mazess RB, et al.: Effect of tamoxifen on lumbar spine bone mineral density in postmenopausal women after 5 years. Arch Intern Med 154 (22): 2585-8, 1994. [PUBMED Abstract]
  89. Powles TJ, Hickish T, Kanis JA, et al.: Effect of tamoxifen on bone mineral density measured by dual-energy x-ray absorptiometry in healthy premenopausal and postmenopausal women. J Clin Oncol 14 (1): 78-84, 1996. [PUBMED Abstract]
  90. Costantino JP, Kuller LH, Ives DG, et al.: Coronary heart disease mortality and adjuvant tamoxifen therapy. J Natl Cancer Inst 89 (11): 776-82, 1997. [PUBMED Abstract]
  91. McDonald CC, Stewart HJ: Fatal myocardial infarction in the Scottish adjuvant tamoxifen trial. The Scottish Breast Cancer Committee. BMJ 303 (6800): 435-7, 1991. [PUBMED Abstract]
  92. Rutqvist LE, Mattsson A: Cardiac and thromboembolic morbidity among postmenopausal women with early-stage breast cancer in a randomized trial of adjuvant tamoxifen. The Stockholm Breast Cancer Study Group. J Natl Cancer Inst 85 (17): 1398-406, 1993. [PUBMED Abstract]
  93. Fisher B, Costantino JP, Redmond CK, et al.: Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst 86 (7): 527-37, 1994. [PUBMED Abstract]
  94. Bergman L, Beelen ML, Gallee MP, et al.: Risk and prognosis of endometrial cancer after tamoxifen for breast cancer. Comprehensive Cancer Centres' ALERT Group. Assessment of Liver and Endometrial cancer Risk following Tamoxifen. Lancet 356 (9233): 881-7, 2000. [PUBMED Abstract]
  95. Cuzick J, Powles T, Veronesi U, et al.: Overview of the main outcomes in breast-cancer prevention trials. Lancet 361 (9354): 296-300, 2003. [PUBMED Abstract]
  96. Redmond CK, Wickerham DL, Cronin W, et al.: The NSABP breast cancer prevention trial (BCPT): a progress report. [Abstract] Proceedings of the American Society of Clinical Oncology 12: A-78, 69, 1993.
  97. Fisher B, Costantino JP, Wickerham DL, et al.: Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90 (18): 1371-88, 1998. [PUBMED Abstract]
  98. Fisher B, Costantino JP, Wickerham DL, et al.: Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 97 (22): 1652-62, 2005. [PUBMED Abstract]
  99. Powles T, Eeles R, Ashley S, et al.: Interim analysis of the incidence of breast cancer in the Royal Marsden Hospital tamoxifen randomised chemoprevention trial. Lancet 352 (9122): 98-101, 1998. [PUBMED Abstract]
  100. Veronesi U, Maisonneuve P, Costa A, et al.: Prevention of breast cancer with tamoxifen: preliminary findings from the Italian randomised trial among hysterectomised women. Italian Tamoxifen Prevention Study. Lancet 352 (9122): 93-7, 1998. [PUBMED Abstract]
  101. Cuzick J, Forbes J, Edwards R, et al.: First results from the International Breast Cancer Intervention Study (IBIS-I): a randomised prevention trial. Lancet 360 (9336): 817-24, 2002. [PUBMED Abstract]
  102. Powles TJ, Ashley S, Tidy A, et al.: Twenty-year follow-up of the Royal Marsden randomized, double-blinded tamoxifen breast cancer prevention trial. J Natl Cancer Inst 99 (4): 283-90, 2007. [PUBMED Abstract]
  103. Veronesi U, Maisonneuve P, Rotmensz N, et al.: Tamoxifen for the prevention of breast cancer: late results of the Italian Randomized Tamoxifen Prevention Trial among women with hysterectomy. J Natl Cancer Inst 99 (9): 727-37, 2007. [PUBMED Abstract]
  104. Martino S, Costantino J, McNabb M, et al.: The role of selective estrogen receptor modulators in the prevention of breast cancer: comparison of the clinical trials. Oncologist 9 (2): 116-25, 2004. [PUBMED Abstract]
  105. Cuzick J, Forbes JF, Sestak I, et al.: Long-term results of tamoxifen prophylaxis for breast cancer--96-month follow-up of the randomized IBIS-I trial. J Natl Cancer Inst 99 (4): 272-82, 2007. [PUBMED Abstract]
  106. Fisher B, Dignam J, Wolmark N, et al.: Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet 353 (9169): 1993-2000, 1999. [PUBMED Abstract]
  107. Khovidhunkit W, Shoback DM: Clinical effects of raloxifene hydrochloride in women. Ann Intern Med 130 (5): 431-9, 1999. [PUBMED Abstract]
  108. Cauley JA, Norton L, Lippman ME, et al.: Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-year results from the MORE trial. Multiple outcomes of raloxifene evaluation. Breast Cancer Res Treat 65 (2): 125-34, 2001. [PUBMED Abstract]
  109. Cummings SR, Eckert S, Krueger KA, et al.: The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple Outcomes of Raloxifene Evaluation. JAMA 281 (23): 2189-97, 1999. [PUBMED Abstract]
  110. Martino S, Cauley JA, Barrett-Connor E, et al.: Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst 96 (23): 1751-61, 2004. [PUBMED Abstract]
  111. Grady D, Cauley JA, Geiger MJ, et al.: Reduced incidence of invasive breast cancer with raloxifene among women at increased coronary risk. J Natl Cancer Inst 100 (12): 854-61, 2008. [PUBMED Abstract]
  112. Vogel VG, Costantino JP, Wickerham DL, et al.: Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295 (23): 2727-41, 2006. [PUBMED Abstract]
  113. Land SR, Wickerham DL, Costantino JP, et al.: Patient-reported symptoms and quality of life during treatment with tamoxifen or raloxifene for breast cancer prevention: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295 (23): 2742-51, 2006. [PUBMED Abstract]
  114. The ATAC Trialists' Group. Arimidex, tamoxifen alone or in combination: Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359 (9324): 2131-9, 2002. [PUBMED Abstract]
  115. Goss PE, Ingle JN, Martino S, et al.: A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med 349 (19): 1793-802, 2003. [PUBMED Abstract]
  116. Goss PE, Ingle JN, Pritchard KI, et al.: Extending Aromatase-Inhibitor Adjuvant Therapy to 10 Years. N Engl J Med 375 (3): 209-19, 2016. [PUBMED Abstract]
  117. Coombes RC, Hall E, Gibson LJ, et al.: A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 350 (11): 1081-92, 2004. [PUBMED Abstract]
  118. Goss PE, Ingle JN, Alés-Martínez JE, et al.: Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 364 (25): 2381-91, 2011. [PUBMED Abstract]
  119. Cuzick J, Sestak I, Forbes JF, et al.: Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet 383 (9922): 1041-8, 2014. [PUBMED Abstract]
  120. Hartmann LC, Schaid DJ, Woods JE, et al.: Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 340 (2): 77-84, 1999. [PUBMED Abstract]
  121. Kummerow KL, Du L, Penson DF, et al.: Nationwide trends in mastectomy for early-stage breast cancer. JAMA Surg 150 (1): 9-16, 2015. [PUBMED Abstract]
  122. Rebbeck TR, Levin AM, Eisen A, et al.: Breast cancer risk after bilateral prophylactic oophorectomy in BRCA1 mutation carriers. J Natl Cancer Inst 91 (17): 1475-9, 1999. [PUBMED Abstract]
  123. Kauff ND, Satagopan JM, Robson ME, et al.: Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 346 (21): 1609-15, 2002. [PUBMED Abstract]
  124. Rebbeck TR, Lynch HT, Neuhausen SL, et al.: Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 346 (21): 1616-22, 2002. [PUBMED Abstract]
  125. Kauff ND, Domchek SM, Friebel TM, et al.: Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. J Clin Oncol 26 (8): 1331-7, 2008. [PUBMED Abstract]
  126. Breast cancer and hormonal contraceptives: further results. Collaborative Group on Hormonal Factors in Breast Cancer. Contraception 54 (3 Suppl): 1S-106S, 1996. [PUBMED Abstract]
  127. Marchbanks PA, McDonald JA, Wilson HG, et al.: Oral contraceptives and the risk of breast cancer. N Engl J Med 346 (26): 2025-32, 2002. [PUBMED Abstract]
  128. Strom BL, Berlin JA, Weber AL, et al.: Absence of an effect of injectable and implantable progestin-only contraceptives on subsequent risk of breast cancer. Contraception 69 (5): 353-60, 2004. [PUBMED Abstract]
  129. Mørch LS, Skovlund CW, Hannaford PC, et al.: Contemporary Hormonal Contraception and the Risk of Breast Cancer. N Engl J Med 377 (23): 2228-2239, 2017. [PUBMED Abstract]
  130. Wolff MS, Toniolo PG, Lee EW, et al.: Blood levels of organochlorine residues and risk of breast cancer. J Natl Cancer Inst 85 (8): 648-52, 1993. [PUBMED Abstract]
  131. Høyer AP, Grandjean P, Jørgensen T, et al.: Organochlorine exposure and risk of breast cancer. Lancet 352 (9143): 1816-20, 1998. [PUBMED Abstract]
  132. Shames LS, Munekata MT, Pike MC: Re: Blood levels of organochlorine residues and risk of breast cancer. J Natl Cancer Inst 86 (21): 1642-3, 1994. [PUBMED Abstract]
  133. Krieger N, Wolff MS, Hiatt RA, et al.: Breast cancer and serum organochlorines: a prospective study among white, black, and Asian women. J Natl Cancer Inst 86 (8): 589-99, 1994. [PUBMED Abstract]
  134. Hunter DJ, Hankinson SE, Laden F, et al.: Plasma organochlorine levels and the risk of breast cancer. N Engl J Med 337 (18): 1253-8, 1997. [PUBMED Abstract]
  135. Laden F, Collman G, Iwamoto K, et al.: 1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene and polychlorinated biphenyls and breast cancer: combined analysis of five U.S. studies. J Natl Cancer Inst 93 (10): 768-76, 2001. [PUBMED Abstract]
  136. Ward EM, Schulte P, Grajewski B, et al.: Serum organochlorine levels and breast cancer: a nested case-control study of Norwegian women. Cancer Epidemiol Biomarkers Prev 9 (12): 1357-67, 2000. [PUBMED Abstract]
  137. Laden F, Hankinson SE, Wolff MS, et al.: Plasma organochlorine levels and the risk of breast cancer: an extended follow-up in the Nurses' Health Study. Int J Cancer 91 (4): 568-74, 2001. [PUBMED Abstract]
  138. Huang Y, Zhang X, Li W, et al.: A meta-analysis of the association between induced abortion and breast cancer risk among Chinese females. Cancer Causes Control 25 (2): 227-36, 2014. [PUBMED Abstract]
  139. Sanderson M, Shu XO, Jin F, et al.: Abortion history and breast cancer risk: results from the Shanghai Breast Cancer Study. Int J Cancer 92 (6): 899-905, 2001. [PUBMED Abstract]
  140. Beral V, Bull D, Doll R, et al.: Breast cancer and abortion: collaborative reanalysis of data from 53 epidemiological studies, including 83,000 women with breast cancer from 16 countries. Lancet 363 (9414): 1007-16, 2004. [PUBMED Abstract]
  141. Melbye M, Wohlfahrt J, Olsen JH, et al.: Induced abortion and the risk of breast cancer. N Engl J Med 336 (2): 81-5, 1997. [PUBMED Abstract]
  142. Rookus MA, van Leeuwen FE: Induced abortion and risk for breast cancer: reporting (recall) bias in a Dutch case-control study. J Natl Cancer Inst 88 (23): 1759-64, 1996. [PUBMED Abstract]
  143. Committee on Gynecologic Practice: ACOG Committee Opinion No. 434: induced abortion and breast cancer risk. Obstet Gynecol 113 (6): 1417-8, 2009. [PUBMED Abstract]
  144. Henderson KD, Sullivan-Halley J, Reynolds P, et al.: Incomplete pregnancy is not associated with breast cancer risk: the California Teachers Study. Contraception 77 (6): 391-6, 2008. [PUBMED Abstract]
  145. Lash TL, Fink AK: Null association between pregnancy termination and breast cancer in a registry-based study of parous women. Int J Cancer 110 (3): 443-8, 2004. [PUBMED Abstract]
  146. Michels KB, Xue F, Colditz GA, et al.: Induced and spontaneous abortion and incidence of breast cancer among young women: a prospective cohort study. Arch Intern Med 167 (8): 814-20, 2007. [PUBMED Abstract]
  147. Wu JQ, Li YY, Ren JC, et al.: Induced abortion and breast cancer: results from a population-based case control study in China. Asian Pac J Cancer Prev 15 (8): 3635-40, 2014. [PUBMED Abstract]
  148. Braüner CM, Overvad K, Tjønneland A, et al.: Induced abortion and breast cancer among parous women: a Danish cohort study. Acta Obstet Gynecol Scand 92 (6): 700-5, 2013. [PUBMED Abstract]
  149. Guo J, Huang Y, Yang L, et al.: Association between abortion and breast cancer: an updated systematic review and meta-analysis based on prospective studies. Cancer Causes Control 26 (6): 811-9, 2015. [PUBMED Abstract]
  150. Carroll KK, Khor HT: Dietary fat in relation to tumorigenesis. Prog Biochem Pharmacol 10: 308-53, 1975. [PUBMED Abstract]
  151. Hunter DJ, Spiegelman D, Adami HO, et al.: Cohort studies of fat intake and the risk of breast cancer--a pooled analysis. N Engl J Med 334 (6): 356-61, 1996. [PUBMED Abstract]
  152. Prentice RL, Caan B, Chlebowski RT, et al.: Low-fat dietary pattern and risk of invasive breast cancer: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295 (6): 629-42, 2006. [PUBMED Abstract]
  153. Howard BV, Van Horn L, Hsia J, et al.: Low-fat dietary pattern and risk of cardiovascular disease: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295 (6): 655-66, 2006. [PUBMED Abstract]
  154. Smith-Warner SA, Spiegelman D, Yaun SS, et al.: Intake of fruits and vegetables and risk of breast cancer: a pooled analysis of cohort studies. JAMA 285 (6): 769-76, 2001. [PUBMED Abstract]
  155. Pierce JP, Natarajan L, Caan BJ, et al.: Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women's Healthy Eating and Living (WHEL) randomized trial. JAMA 298 (3): 289-98, 2007. [PUBMED Abstract]
  156. Toledo E, Salas-Salvadó J, Donat-Vargas C, et al.: Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial: A Randomized Clinical Trial. JAMA Intern Med 175 (11): 1752-60, 2015. [PUBMED Abstract]
  157. Estruch R, Ros E, Salas-Salvadó J, et al.: Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368 (14): 1279-90, 2013. [PUBMED Abstract]
  158. Lee IM, Cook NR, Manson JE, et al.: Beta-carotene supplementation and incidence of cancer and cardiovascular disease: the Women's Health Study. J Natl Cancer Inst 91 (24): 2102-6, 1999. [PUBMED Abstract]
  159. Lee IM, Cook NR, Gaziano JM, et al.: Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial. JAMA 294 (1): 56-65, 2005. [PUBMED Abstract]
  160. Lin J, Cook NR, Albert C, et al.: Vitamins C and E and beta carotene supplementation and cancer risk: a randomized controlled trial. J Natl Cancer Inst 101 (1): 14-23, 2009. [PUBMED Abstract]
  161. Zhang SM, Cook NR, Albert CM, et al.: Effect of combined folic acid, vitamin B6, and vitamin B12 on cancer risk in women: a randomized trial. JAMA 300 (17): 2012-21, 2008. [PUBMED Abstract]
  162. Costa A, Formelli F, Chiesa F, et al.: Prospects of chemoprevention of human cancers with the synthetic retinoid fenretinide. Cancer Res 54 (7 Suppl): 2032s-2037s, 1994. [PUBMED Abstract]
  163. Veronesi U, De Palo G, Marubini E, et al.: Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer. J Natl Cancer Inst 91 (21): 1847-56, 1999. [PUBMED Abstract]
  164. The Health Consequences of Smoking: A Report of the Surgeon General. Atlanta, Ga: U.S. Department of Health and Human Services, CDC, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2004. Also available online. Last accessed March 6, 2019.
  165. U.S. Department of Health and Human Services: The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. Atlanta, Ga: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Coordinating Center for Health Promotion, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2006. Also available online. Last accessed March 13, 2019.
  166. Pirie K, Beral V, Peto R, et al.: Passive smoking and breast cancer in never smokers: prospective study and meta-analysis. Int J Epidemiol 37 (5): 1069-79, 2008. [PUBMED Abstract]
  167. Mirick DK, Davis S, Thomas DB: Antiperspirant use and the risk of breast cancer. J Natl Cancer Inst 94 (20): 1578-80, 2002. [PUBMED Abstract]
  168. McGrath KG: An earlier age of breast cancer diagnosis related to more frequent use of antiperspirants/deodorants and underarm shaving. Eur J Cancer Prev 12 (6): 479-85, 2003. [PUBMED Abstract]
  169. Dale KM, Coleman CI, Henyan NN, et al.: Statins and cancer risk: a meta-analysis. JAMA 295 (1): 74-80, 2006. [PUBMED Abstract]
  170. Bonovas S, Filioussi K, Tsavaris N, et al.: Use of statins and breast cancer: a meta-analysis of seven randomized clinical trials and nine observational studies. J Clin Oncol 23 (34): 8606-12, 2005. [PUBMED Abstract]
  171. Newcomb PA, Trentham-Dietz A, Hampton JM: Bisphosphonates for osteoporosis treatment are associated with reduced breast cancer risk. Br J Cancer 102 (5): 799-802, 2010. [PUBMED Abstract]
  172. Rennert G, Pinchev M, Rennert HS: Use of bisphosphonates and risk of postmenopausal breast cancer. J Clin Oncol 28 (22): 3577-81, 2010. [PUBMED Abstract]
  173. Chlebowski RT, Chen Z, Cauley JA, et al.: Oral bisphosphonate use and breast cancer incidence in postmenopausal women. J Clin Oncol 28 (22): 3582-90, 2010. [PUBMED Abstract]
  174. Cardwell CR, Abnet CC, Veal P, et al.: Exposure to oral bisphosphonates and risk of cancer. Int J Cancer 131 (5): E717-25, 2012. [PUBMED Abstract]
  175. Monsees GM, Malone KE, Tang MT, et al.: Bisphosphonate use after estrogen receptor-positive breast cancer and risk of contralateral breast cancer. J Natl Cancer Inst 103 (23): 1752-60, 2011. [PUBMED Abstract]
  176. Hue TF, Cummings SR, Cauley JA, et al.: Effect of bisphosphonate use on risk of postmenopausal breast cancer: results from the randomized clinical trials of alendronate and zoledronic acid. JAMA Intern Med 174 (10): 1550-7, 2014. [PUBMED Abstract]
  177. Straif K, Baan R, Grosse Y, et al.: Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol 8 (12): 1065-1066, 2007. [PUBMED Abstract]
  178. Kamdar BB, Tergas AI, Mateen FJ, et al.: Night-shift work and risk of breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 138 (1): 291-301, 2013. [PUBMED Abstract]
  179. Travis RC, Balkwill A, Fensom GK, et al.: Night Shift Work and Breast Cancer Incidence: Three Prospective Studies and Meta-analysis of Published Studies. J Natl Cancer Inst 108 (12): , 2016. [PUBMED Abstract]

No hay comentarios:

Publicar un comentario