martes, 16 de abril de 2019

Tratamiento de la leucemia mieloide aguda infantil (PDQ®) 1/5 —Versión para profesionales de salud - National Cancer Institute

Tratamiento de la leucemia mieloide aguda infantil (PDQ®)—Versión para profesionales de salud - National Cancer Institute

Instituto Nacional Del Cáncer



Tratamiento de la leucemia mieloide aguda y otras neoplasias mieloides malignas infantiles (PDQ®)–Versión para profesionales de salud




Información general sobre la leucemia mieloide aguda infantil



Se han logrado mejoras notables en la supervivencia de niños y adolescentes con cáncer.[1] Entre 1975 y 2010, la mortalidad por cáncer infantil disminuyó en más de 50 %. En el mismo período, la tasa de supervivencia a 5 años para la leucemia mieloide aguda (LMA) aumentó de menos de 20 a 68 % para los niños menores de 15 años, y de 20 a 57 % para los adolescentes de 15 a 19 años.[1]

Características de las leucemias mieloides y otras neoplasias malignas mieloides en los niños

Cerca de 20 % de las leucemias infantiles son de origen mieloide y representan una gama de neoplasias malignas hematopoyéticas.[2] La mayoría de las leucemias mieloides son agudas; el resto son trastornos mieloproliferativos crónicos o subagudos, como la leucemia mielógena crónica y la leucemia mielomonocítica juvenil. Los síndromes mielodisplásicos son mucho menos frecuentes en niños que en adultos y, de manera casi invariable, son afecciones preleucémicas clonales que a veces evolucionan desde síndromes de insuficiencia medular congénita como la anemia de Fanconi y el síndrome de Shwachman-Diamond.
Las características generales de las leucemias mieloides y otras neoplasias malignas mieloides se describen a continuación:
  • Leucemia mieloide aguda (LMA). La LMA se define como un trastorno clonal causado por la transformación maligna de un producto de la médula ósea, células madre o progenitoras que se renuevan solas, que conduce a una acumulación de células mieloides inmaduras no funcionales. Estas circunstancias llevan a un aumento de la acumulación de estas células mieloides malignas en la médula ósea y otros órganos. Para llamarse aguda, por lo general la médula ósea debe contener más de 20 % de blastocitos leucémicos inmaduros, con algunas excepciones según se describe en las secciones siguientes. (Para obtener más información, consultar las secciones de este sumario sobre Aspectos generales de las opciones de tratamiento de la leucemia mieloide aguda infantil y Tratamiento de la leucemia mieloide aguda infantil).
  • Mielopoyesis anormal transitoria (MAT). La MAT también se llama trastorno mieloproliferativo transitorio o leucemia transitoria. La MAT que se observa en lactantes con síndrome de Down representa una expansión clonal de mieloblastos que es difícil de distinguir de una LMA. Es importante destacar que la MAT remite de manera espontánea en la mayoría de los casos durante los 3 primeros meses de vida. La MAT se presenta en 4 a 10 % de los lactantes con síndrome de Down.[3-5]
    Los blastocitos de la MAT a menudo exhiben características de diferenciación megacariocítica y mutaciones características que afectan el gen GATA1.[6,7] La MAT a veces se presenta en lactantes con fenotipo normal y mosaicismo genético de trisomía 21 en la médula ósea. Aunque la MAT por lo general no se caracteriza por anomalías citogenéticas diferentes a la trisomía 21, la presencia de otras manifestaciones citogenéticas quizá pronostique un aumento de riesgo de LMA posterior.[8] Cerca de 20 % de los lactantes con MAT y síndrome de Down con el tiempo presentan LMA; la mayoría de los casos se diagnostican durante los primeros 3 años de vida.[7,8]
    La muerte prematura por complicaciones relacionadas con la MAT se presenta en 10 a 20 % de los lactantes afectados.[8-10] Los lactantes con organomegalia progresiva, derrames viscerales, recuentos altos de blastocitos (>100 000 células/μl) y hallazgos de laboratorio de insuficiencia hepática progresiva tienen un riesgo particularmente alto de mortalidad prematura.[8,10] (Para obtener más información, consultar la sección de este sumario sobre Niños con síndrome de Down, y leucemia mieloide aguda o mielopoyesis anormal transitoria).
  • Síndrome mielodisplásico (SMD). El SMD en niños representa un grupo heterogéneo de trastornos que se caracteriza por hematopoyesis ineficaz, alteración en la maduración de los progenitores mieloides con características morfológicas displásicas y citopenias. Aunque no se conoce la causa subyacente de los SMD en los niños, a menudo se relacionan con síndromes de insuficiencia medular. La mayoría de los pacientes con SMD tiene una médula ósea hipercelular sin aumento del número de blastocitos leucémicos; sin embargo, algunos pacientes tienen una médula ósea muy hipocelular que dificulta la distinción entre una anemia aplásica grave y un SMD.[11]
    La presencia de una anomalía cariotípica en una médula hipocelular es congruente con un SMD y se debe anticipar una transformación a LMA. Debido a que es frecuente que un SMD evolucione a una LMA, los pacientes con SMD por lo general se derivan para trasplante de células madre antes de que ocurra la transformación a LMA. (Para obtener más información, consultar la sección de este sumario sobre Síndrome mielodisplásicos).
  • Leucemia mielomonocítica juvenil (LMMJ). La LMMJ representa el síndrome mieloproliferativo más frecuente en niños pequeños. La mediana de edad del inicio de la LMMJ es de 1,8 años.
    La LMMJ se manifiesta de forma característica con hepatoesplenomegalia, linfadenopatía, fiebre y erupción cutánea, junto con un recuento elevado de glóbulos blancos (GB) y un aumento de monocitos circulantes.[12] Además, los pacientes a menudo tienen concentraciones altas de hemoglobina F, hipersensibilidad de las células leucémicas al factor estimulante de las colonias de granulocitos y macrófagos (GM-CSF), monosomía 7 y mutaciones de las células leucémicas en un gen que participa en la vía de señalización RAS (por ejemplo, NF1KRAS/NRASPTPN11 o CBL).[12-14] (Para obtener más información, consultar la sección de este sumario sobre Leucemia mielomonocítica juvenil).
  • Leucemia mielógena crónica (LMC). La LMC es, en esencia, una enfermedad de adultos; sin embargo, es la forma más común de trastorno mieloproliferativo infantil pues representa cerca de 10 % de las leucemias mieloides infantiles.[2] Aunque se han notificado casos de LMC en niños muy pequeños, la mayoría de los pacientes tienen 6 años o más.
    La LMC es una panmielopatía clonal que afecta todos los linajes de células hematopoyéticas. Aunque el recuento de glóbulos blancos (GB) puede estar muy elevado, la médula ósea no exhibe un número alto de blastocitos leucémicos durante la fase crónica de esta enfermedad. La causa de la LMC es el cromosoma Filadelfia, una translocación entre los cromosomas 9 y 22 (es decir, t(9;22)) que produce la fusión de los genes BCR y ABL1. (Para obtener más información, consultar la sección de este sumario sobre Leucemia mielógena crónica).
    Otros síndromes mieloproliferativos crónicos, como la policitemia vera y la trombocitosis esencial, son muy infrecuentes en los niños.

Afecciones relacionadas con las neoplasias mieloides malignas

Las anomalías genéticas (síndromes de predisposición al cáncer) se relacionan con la formación de LMA. Hay una tasa alta de coincidencia de LMA en gemelos idénticos; sin embargo, no se cree que se relacione con un riesgo genético sino con la circulación compartida y la incapacidad de uno de los gemelos de rechazar las células leucémicas del otro gemelo durante el desarrollo fetal.[15-17] Se calcula que el riesgo de padecer de leucemia es 2 a 4 veces más alto para el gemelo dicigótico de un paciente con leucemia infantil hasta los 6 años; después de esa edad, el riesgo no es mucho más alto que el de la población general.[18,19]
La aparición de LMA también se ha relacionado con diversos síndromes hereditarios, adquiridos y familiares que son consecuencia de desequilibrios o inestabilidades cromosómicas, defectos en la reparación del ADN, alteración del receptor de citocinas o activación de la vía de transducción de la señales, y alteración de la síntesis proteica.[20,21]
Síndromes hereditarios
  • Desequilibrios cromosómicos:
    • Síndrome de Down.
    • Monosomía 7 familiar.
  • Síndromes de inestabilidad cromosómica:
    • Anemia de Fanconi.
    • Disqueratosis congénita.
    • Síndrome de Bloom.
  • Síndromes de crecimiento y defectos de las vías de señalización de la supervivencia celular:
    • Neurofibromatosis tipo 1 (en particular, predisposición a la LMMJ).
    • Síndrome de Noonan (en particular, predisposición a la LMMJ).
    • Neutrocitopenia congénita grave (síndrome de Kostmann).
    • Síndrome de Shwachman-Diamond.
    • Anemia de Diamond-Blackfan.
    • Trombocitopenia amegacariocítica congénita.
    • Síndrome de la línea germinal de CBL (en particular, predisposición a la LMMJ).
    • Síndrome de Li-Fraumeni (mutaciones en TP53).
Síndromes adquiridos
  • Anemia aplásica grave.
  • Hemoglobinuria paroxística nocturna.
  • Trombocitopenia amegacariocítica.
  • Monosomía 7 adquirida.
Síndromes mielodisplásicos y leucemia mieloide aguda familiares
  • Trastorno plaquetario familiar con propensión a presentar LMA (relacionado con mutaciones de la línea germinal en RUNX1).
  • SMD y LMA familiares con mutaciones de la línea germinal en GATA2.
  • SMD y LMA familiares con mutaciones de la línea germinal en CEBPA.[22]
  • Trastornos de las características biológicas de los telómeros debido a una mutación en TERC o TERT (es decir, disqueratosis congénita oculta).
También está en estudio la susceptibilidad genética a la LMA que no se relaciona con síndromes. Por ejemplo, la homocigosis de un polimorfismo específico de IKZF1 se ha relacionado con un aumento de riesgo de LMA infantil.[23]

Bibliografía
  1. Smith MA, Altekruse SF, Adamson PC, et al.: Declining childhood and adolescent cancer mortality. Cancer 120 (16): 2497-506, 2014. [PUBMED Abstract]
  2. Smith MA, Ries LA, Gurney JG, et al.: Leukemia. In: Ries LA, Smith MA, Gurney JG, et al., eds.: Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995. Bethesda, Md: National Cancer Institute, SEER Program, 1999. NIH Pub.No. 99-4649, pp 17-34. Also available online. Last accessed January 31, 2019.
  3. Roberts I, Alford K, Hall G, et al.: GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. Blood 122 (24): 3908-17, 2013. [PUBMED Abstract]
  4. Zipursky A: Transient leukaemia--a benign form of leukaemia in newborn infants with trisomy 21. Br J Haematol 120 (6): 930-8, 2003. [PUBMED Abstract]
  5. Gamis AS, Smith FO: Transient myeloproliferative disorder in children with Down syndrome: clarity to this enigmatic disorder. Br J Haematol 159 (3): 277-87, 2012. [PUBMED Abstract]
  6. Hitzler JK, Cheung J, Li Y, et al.: GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood 101 (11): 4301-4, 2003. [PUBMED Abstract]
  7. Mundschau G, Gurbuxani S, Gamis AS, et al.: Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood 101 (11): 4298-300, 2003. [PUBMED Abstract]
  8. Massey GV, Zipursky A, Chang MN, et al.: A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children's Oncology Group (COG) study POG-9481. Blood 107 (12): 4606-13, 2006. [PUBMED Abstract]
  9. Homans AC, Verissimo AM, Vlacha V: Transient abnormal myelopoiesis of infancy associated with trisomy 21. Am J Pediatr Hematol Oncol 15 (4): 392-9, 1993. [PUBMED Abstract]
  10. Gamis AS, Alonzo TA, Gerbing RB, et al.: Natural history of transient myeloproliferative disorder clinically diagnosed in Down syndrome neonates: a report from the Children's Oncology Group Study A2971. Blood 118 (26): 6752-9; quiz 6996, 2011. [PUBMED Abstract]
  11. Hasle H, Niemeyer CM: Advances in the prognostication and management of advanced MDS in children. Br J Haematol 154 (2): 185-95, 2011. [PUBMED Abstract]
  12. Niemeyer CM, Arico M, Basso G, et al.: Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS) Blood 89 (10): 3534-43, 1997. [PUBMED Abstract]
  13. Loh ML: Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br J Haematol 152 (6): 677-87, 2011. [PUBMED Abstract]
  14. Stieglitz E, Taylor-Weiner AN, Chang TY, et al.: The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet 47 (11): 1326-33, 2015. [PUBMED Abstract]
  15. Zuelzer WW, Cox DE: Genetic aspects of leukemia. Semin Hematol 6 (3): 228-49, 1969. [PUBMED Abstract]
  16. Miller RW: Persons with exceptionally high risk of leukemia. Cancer Res 27 (12): 2420-3, 1967. [PUBMED Abstract]
  17. Inskip PD, Harvey EB, Boice JD Jr, et al.: Incidence of childhood cancer in twins. Cancer Causes Control 2 (5): 315-24, 1991. [PUBMED Abstract]
  18. Kurita S, Kamei Y, Ota K: Genetic studies on familial leukemia. Cancer 34 (4): 1098-101, 1974. [PUBMED Abstract]
  19. Greaves M: Pre-natal origins of childhood leukemia. Rev Clin Exp Hematol 7 (3): 233-45, 2003. [PUBMED Abstract]
  20. Puumala SE, Ross JA, Aplenc R, et al.: Epidemiology of childhood acute myeloid leukemia. Pediatr Blood Cancer 60 (5): 728-33, 2013. [PUBMED Abstract]
  21. West AH, Godley LA, Churpek JE: Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann N Y Acad Sci 1310: 111-8, 2014. [PUBMED Abstract]
  22. Tawana K, Wang J, Renneville A, et al.: Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 126 (10): 1214-23, 2015. [PUBMED Abstract]
  23. Ross JA, Linabery AM, Blommer CN, et al.: Genetic variants modify susceptibility to leukemia in infants: a Children's Oncology Group report. Pediatr Blood Cancer 60 (1): 31-4, 2013. [PUBMED Abstract]

Clasificación de las neoplasias mieloides malignas infantiles


Sistema de clasificación para la leucemia mieloide aguda infantil del grupo French-American-British

El primer sistema de clasificación integral morfológica e histoquímica de la leucemia mieloide aguda (LMA) lo formuló el French-American-British (FAB) Cooperative Group.[1-5] En este sistema de clasificación, que se reemplazó con el sistema de clasificación de la Organización Mundial de la Salud (OMS) descrito a continuación, se clasificaba la LMA en subtipos principales de acuerdo con la determinación morfológica e inmunohistoquímica de marcadores de linaje.
Los subtipos principales de LMA son los siguientes:
  • M0: leucemia mieloblástica aguda sin diferenciación.[6,7] La LMA M0, que también se conoce como LMA con diferenciación mínima, no expresa mieloperoxidasa (MPO) en la microscopía óptica, pero a veces exhibe gránulos característicos en la microscopía electrónica. La LMA M0 se puede definir por la expresión de marcadores de conglomerados determinantes (CD) como el CD13, CD33 y CD117 (c-KIT) en ausencia de diferenciación linfoide.
  • M1: leucemia mieloblástica aguda con diferenciación mínima, pero que expresa MPO detectable mediante análisis inmunohistoquímico o citometría de flujo.
  • M2: leucemia mieloblástica aguda con diferenciación.
  • M3: leucemia promielocítica aguda (LPA) tipo hipergranular. (Para obtener más información, consultar la sección de este sumario sobre Leucemia promielocítica aguda).
  • M3v: LPA, variante microgranular. El citoplasma de los promielocitos muestra una granularidad fina y núcleos que a menudo están plegados. La M3v tiene las mismas repercusiones clínicas, citogenéticas y terapéuticas que la FAB M3.
  • M4: leucemia mielomonocítica aguda (LMMA).
  • M4Eo: LMMA con eosinofilia (eosinófilos anormales con gránulos basofílicos displásicos).
  • M5: leucemia monocítica aguda (LMoA).
    • M5a: LMoA sin diferenciación (monoblástica).
    • M5b: LMoA con diferenciación.
  • M6: leucemia eritroide aguda (LEA).
    • M6a: eritroleucemia.
    • M6b: leucemia eritroide pura (el componente de mieloblastos no es aparente).
    • M6c: presencia de mieloblastos y proeritroblastos.
  • M7: leucemia megacariocítica aguda (LMCA).
Otros subtipos de LMA muy infrecuentes son la leucemia eosinofílica aguda y la leucemia basofílica aguda.
La clasificación FAB se reemplazó con la clasificación de la OMS descrita a continuación, pero sigue siendo importante porque constituye la base de la subcategoría de LMA sin otra indicación (LMA, SAI) que se usa en la OMS.

Sistema de clasificación de la Organización Mundial de la Salud para la leucemia mieloide aguda infantil

En 2001, la Organización Mundial de la Salud (OMS) propuso un sistema de clasificación nuevo que incorporó información citogenética de utilidad diagnóstica y que se correlaciona de forma más confiable con los desenlaces. En esta clasificación, los pacientes con t(8;21), inv(16), t(15;17) o translocaciones de KMT2A (MLL), que en conjunto eran casi la mitad de los casos de LMA infantil, se clasificaron como LMA con anomalías citogenéticas recurrentes. Este sistema de clasificación también disminuyó el requisito del porcentaje de blastocitos leucémicos en la médula ósea necesarios para diagnosticar una LMA de 30 a 20 %; además, se aclaró que los pacientes con anomalías citogenéticas recurrentes no necesitan cumplir los requisitos mínimos de blastocitos para considerar que tienen una LMA.[8-10]
En el año 2008, la OMS aumentó el número de anomalías citogenéticas vinculadas con la clasificación de LMA y, por primera vez, incluyó mutaciones en genes específicos (CEBPA y NPM) en su sistema de clasificación.[11] En 2016, se revisó la clasificación de la OMS para incluir más información sobre los biomarcadores de leucemia de extrema importancia para el diagnóstico, pronóstico y tratamiento de la leucemia.[12] A medida que surjan nuevas tecnologías que apunten a la clasificación genética, epigenética, proteómica e inmunofenotípica, no cabe duda que la clasificación de la LMA seguirá evolucionado, y proporcionará pautas esclarecedoras del pronóstico y las características biológicas para médicos e investigadores.

Clasificación de la Organización Mundial de la Salud de 2016 para la leucemia mieloide aguda y las neoplasias relacionadas

  • LMA con anomalías genéticas recurrentes:
    • LMA con t(8;21)(q22;q22), RUNX1-RUNX1T1.
    • LMA con inv(16)(p13.1;q22) o t(16;16)(p13.1;q22), CBFB-MYH11.
    • LPA con PML-RARA.
    • LMA con t(9;11)(p21.3;q23.3), MLLT3-KMT2A.
    • LMA con t(6;9)(p23;q34.1), DEK-NUP214.
    • LMA con inv(3)(q21.3;q26.2) o t(3;3)(q21.3;q26.2), GATA2, MECOM.
    • LMA (megacarioblástica) con t(1;22)(p13.3;q13.3), RBM15-MKL1.
    • LMA con BCR-ABL1 (entidad provisional).
    • LMA con mutación en NPM1.
    • LMA con mutaciones bialélicas en CEBPA.
    • LMA con mutación en RUNX1 (entidad provisional).
  • LMA con características relacionadas con mielodisplasia.
  • Neoplasias mieloides relacionadas con el tratamiento.
  • LMA, SAI:
    • LMA con diferenciación mínima.
    • LMA sin maduración.
    • LMA con maduración.
    • Leucemia mielomonocítica aguda.
    • Leucemia monoblástica o monocítica aguda.
    • Leucemia eritroide pura.
    • Leucemia megacarioblástica aguda.
    • Leucemia basofílica aguda.
    • Panmielosis aguda con mielofibrosis.
  • Sarcoma mieloide.
  • Proliferaciones mieloides relacionadas con el síndrome de Down:
    • Mielopoyesis anormal transitoria (MAT).
    • Leucemia mieloide relacionada con el síndrome de Down.

Clasificación de la Organización Mundial de la Salud de 2016 para las leucemias agudas o de linaje ambiguo

Para las leucemias agudas de linaje ambiguo, el grupo de las leucemias agudas que tienen características de LMA y leucemia linfoblástica aguda (LLA), el sistema de la clasificación de la OMS se resume en el Cuadro 1.[13,14] Los criterios de asignación de linaje para el diagnóstico de la leucemia aguda de fenotipo mixto (LAFM) se presentan en el Cuadro 2.[12]
Cuadro 1. Leucemias agudas de linaje ambiguo de acuerdo con la World Health Organization Classification of Tumors of Hematopoietic and Lymphoid Tissuesa
AfecciónDefinición
SAI: sin otra indicación.
aBéné MC: Biphenotypic, bilineal, ambiguous or mixed lineage: strange leucemias! Haematologica 94 (7): 891-3, 2009.[13] Reproducción del portal de Internet del Haematologica/the Hematology Journal (http://www.haematologica.org).
Leucemia aguda indiferenciadaLeucemia aguda que no expresa ningún marcador que se considere específico para el linaje linfoide o mieloide
Leucemia aguda de fenotipo mixto con t(9;22)(q34;q11.2); BCR-ABL1Leucemia aguda que cumple con los criterios diagnósticos de la leucemia aguda de fenotipo mixto en la que los blastocitos también expresan la translocación (9;22) o un reordenamiento de BCR-ABL1
Leucemia aguda de fenotipo mixto con t(v;11q23); con reordenamiento de KMT2A(MLL)Leucemia aguda que cumple con los criterios diagnósticos de la leucemia aguda de fenotipo mixto en la que los blastocitos también expresan una translocación que afecta el gen KMT2A
Leucemia aguda de fenotipo mixto, B o mieloide, SAILeucemia aguda que cumple con los criterios diagnósticos para asignar un linaje B y un linaje mieloide, en la que los blastocitos carecen de anomalías genéticas que afecten BCR-ABL1 o KMT2A
Leucemia aguda de fenotipo mixto, T o mieloide, SAILeucemia aguda que cumple con los criterios diagnósticos para asignar un linaje T y un linaje mieloide, en la que los blastocitos carecen de anomalías genéticas en los blastocitos que afecten BCR-ABL1 o KMT2A
Leucemia aguda de fenotipo mixto, B o mieloide, SAI (tipos poco frecuentes)Leucemia aguda que cumple con los criterios diagnósticos para asignar un linaje B y un linaje T
Otras leucemias de linaje ambiguoLeucemia o linfoma linfoblástico de células citolíticas naturales
Cuadro 2. Criterios para asignar el linaje de la leucemia aguda de fenotipo mixto de acuerdo con la 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemiaa
LinajeCriterios
aAdaptado de Arber et al.[12]
bFuerte se define como igual o más brillante que las células B o T normales en la muestra.
Linaje mieloideMieloperoxidasa (pruebas de citometría de flujo, inmunohistoquímica o citoquímica); odiferenciación monocítica (por lo menos dos de los siguientes aspectos: prueba citoquímica de esterasa inespecífica, CD11c, CD14, CD64, lisozima)
Linaje TCD3 citoplasmático fuerteb (con anticuerpos contra la cadena ɛ de CD3); o CD3 superficial
Linaje BCD19 fuerteb y expresión fuerte de por lo menos una de las siguientes moléculas: CD79a, CD22 citoplasmático o CD10; o CD19 débil y expresión fuerte de por lo menos dos de las siguientes moléculas: CD79a, CD22 citoplasmático o CD10
Es posible que se observen leucemias de fenotipos mixtos en distintas presentaciones; por ejemplo, las siguientes:
  1. Leucemias bilineales en las que hay dos poblaciones de células diferentes; a menudo, una linfoide y una mieloide.
  2. Leucemias bifenotípicas en las que los blastocitos exhiben características tanto de linaje linfoide como mieloide.
Los casos bifenotípicos representan la mayoría de las leucemias de fenotipo mixto.[15] Los pacientes de leucemias mieloides de células B bifenotípicas que carecen de la fusión TEL-AML1 tienen tasas más bajas de remisión completa (RC) y tasas de supervivencia sin complicaciones (SSC) significativamente más precarias que los pacientes con LLA de células B precursoras.[15] En algunos estudios, se indica que los pacientes de leucemia bifenotípica a veces evolucionan mejor con un régimen de tratamiento linfoide comparado con uno mieloide.[16-19] En un estudio retrospectivo grande del grupo internacional Berlin-Frankfurt-Münster (BFM), se demostró que el tratamiento inicial con un régimen para LLA se relacionó con un desenlace superior al de los regímenes para la LMA o los regímenes combinados para LLA/LMA; en particular, en casos que exhibían CD19 u otra expresión de antígeno linfoide. En este estudio, el trasplante de células madre hematopoyéticas (TCMH) en la primera RC no fue beneficioso, con la posible excepción de casos con hallazgos morfológicos de enfermedad persistente en la médula ósea (≥5 % de blastocitos) después del primer mes de tratamiento.[19]

Clasificación de la Organización Mundial de la Salud sobre los hallazgos en la médula ósea y la sangre periférica de los síndromes mielodisplásicos

La clasificación FAB de los síndromes mielodisplásicos (SMD) no era completamente apropiada para niños.[20,21] Tradicionalmente, los sistemas de clasificación de los SMD se dividieron en varias categorías de acuerdo con la presencia de los siguientes aspectos:[21-24]
  • Mielodisplasia.
  • Tipos de citopenia.
  • Anomalías cromosómicas específicas.
  • Porcentaje de mieloblastos.
La OMS publicó en 2008 un esquema modificado de clasificación para los SMD y los trastornos mieloproliferativos (TMP) que incluyó subsecciones dedicadas a los SMD y TMP infantiles.[25] En la revisión de 2016 de la clasificación de la OMS, se eliminó el énfasis en el linaje específico (anemia, trombocitopenia o neutropenia) y ahora se diferencian los casos con displasia en un solo linaje o en múltiples linajes. Para los pacientes con SMD y exceso de blastocitos (5–20 %), la terminología cambió (las designaciones de anemia resistente al tratamiento con exceso de blastocitos [RAEB]-1 y RAEB-2 ahora se llaman SMD con exceso de blastocitos [SMD-EB]-1 y SMD-EB-2). No se cambió la clasificación del SMD infantil, y la categoría de citopenia infantil resistente al tratamiento permanece como una entidad provisional. Los hallazgos en la médula ósea y la sangre periférica de los síndromes mielodisplásicos de acuerdo con el esquema de clasificación de la OMS de 2008 se resumen en los Cuadros 3 y 4.[12,25]
Se señala que es difícil diferenciar un SMD de otras causas reactivas de displasia o citopenias con apariencia similar. En general, la presencia de más de 10 % de displasia en un linaje celular se considera un criterio diagnóstico de SMD; sin embargo, en las directrices de la OMS de 2016 se advierte que las causas reactivas, más que las clonales, quizá produzcan más de 10 % de displasia y se deben excluir; en particular, cuando la displasia es mínima o afecta un solo linaje.[12]
En 2003, se publicó un abordaje pediátrico de las enfermedades mielodisplásicas y mieloproliferativas a partir de la clasificación de la OMS.[10] En una comparación retrospectiva de la clasificación de la OMS con el sistema Category, Cytology, and Cytogenetics (CCC) y la adaptación pediátrica de la clasificación de la OMS para los SMD/TMP, se observó que estos últimos dos sistemas son más eficaces para clasificar los SMD infantiles que el sistema de clasificación general de la OMS.[26] Por ejemplo, la anemia resistente al tratamiento con sideroblastos en anillo es poco frecuente en los niños; son más frecuentes la anemia resistente al tratamiento y la anemia resistente al tratamiento con exceso de blastocitos. Cuando dichas citopenias resistentes al tratamiento con exceso de blastocitos (5–20 %) se relacionan con anomalías citogenéticas recurrentes, que a menudo se vinculan con la LMA, se debe diagnosticar esta enfermedad y administrar el tratamiento que corresponde.
En el esquema de clasificación de la OMS, dentro de las neoplasias mielodisplásicas o mieloproliferativas hay un subgrupo que incluye la leucemia mielomonocítica juvenil (LMMJ) (antes denominada leucemia mieloide crónica juvenil), la leucemia mielomonocítica crónica (LMMC) y la leucemia mielógena crónica (LMC) que no expresa el cromosoma Filadelfia (Ph). Este grupo exhibe características mieloproliferativas combinadas y algunas veces características mielodisplásicas. La LMMJ comparte algunas características con la LMMC en adultos,[27-29] pero es un síndrome diferente (consultar el Cuadro 8 más adelante). Se considera que un subgrupo de niños menores de 4 años en el momento del diagnóstico de LMMJ relacionada con monosomía 7 padece un subtipo de LMMJ caracterizado por un recuento de glóbulos blancos (GB) más bajo, un porcentaje más alto de monocitos circulantes, una media más alta de volumen eritrocitario, un cociente más bajo entre la médula ósea mieloide y la eritroide y, a menudo, aumento normal a moderado de la hemoglobina fetal.
Para determinar el riesgo de progresión a LMA y el desenlace de los pacientes adultos con SMD, se usa el International Prognostic Scoring System. Cuando este sistema se aplicó a los niños con SMD o LMMJ, solo un recuento de blastocitos de menos de 5 % y un recuento de plaquetas de más de 100 x 109/l se relacionaron con mejor supervivencia para el SMD; un recuento de plaquetas de más de 40 x 109/l pronosticó un mejor desenlace de la LMMJ.[30] Estos resultados indican que es posible que el SMD y la LMMJ en los niños sean trastornos muy diferentes al SMD de tipo adulto.
El SMD en niños con monosomía 7 y el SMD de grado alto se comportan más como el SMD de adultos, se clasifica de manera más apropiada como un SMD de adultos y se trata con TCMH.[31,32] El grupo de riesgo o el grado del SMD se define de acuerdo con las directrices International Prognostic Scoring System.[33]
Cuadro 3. Clasificación de la Organización Mundial de la Salud de los hallazgos en la sangre periférica y la médula ósea de los síndromes mielodisplásicosa
Tipo de síndrome mielodisplásicoMédula óseaSangre periférica
aAdaptado de Arber et al.[12]
bSe destaca que los casos con pancitopenia se clasificarán como SMD-SC.
cCuando la médula tiene <5 % de mieloblastos, pero la sangre periférica tiene 2–4 % de mieloblastos, el diagnóstico es SMD-EB-1.
dEl diagnóstico de SMD-EB-2 se establece si se cumple alguno de los siguientes criterios: médula con 10–19 % de blastocitos, sangre periférica con 5–19 % de blastocitos o cuerpos de Auer.
eAnomalías cromosómicas recurrentes en el SMD: desequilibradas: +8, -7 o del(7q), -5 o del(5q), del(20q), -Y, i(17q) o t(17p), -13 o del(13q), del(11q), del(12p) o t(12p), del(9q), idic(X)(q13); equilibradas: t(11;16)(q23;p13.3), t(3;21)(q26.2;q22.1), t(1;3)(p36.3;q21.2), t(2;11)(p21;q23), inv(3)(q21q26.2), t(6;9)(p23;q34). En la clasificación de la OMS, se indica que se deberá considerar la presencia de estas anomalías cromosómicas si hay citopenias persistentes de origen indeterminado con el fin de respaldar un diagnóstico provisional de SMD cuando no se observan características morfológicas.
fLos criterios diagnósticos para el SMD infantil (citopenia infantil resistente al tratamiento [RCC]-anotación provisional) son los siguientes: 1) citopenia persistente en 1 a 3 líneas celulares con <5 % de blastocitos en la médula ósea, <2 % de blastocitos en sangre periférica, ausencia de sideroblastos en anillo y 2) se deben encontrar cambios displásicos en 1–3 linajes.
SMD con displasia de un solo linajeDisplasia de un linaje: ≥10 % de un linaje mieloide1–2 citopeniasb
<5 % de blastocitosBlastocitos <1 %c
<15 % de sideroblastos en anillo
SMD con sideroblastos en anillo (SMD-SA)Displasia eritroide sola
<5 % de blastocitosSin blastocitos
≥15 % de sideroblastos en anillo
SMD con displasia de linajes múltiplesDisplasia de ≥10 % de las células en ≥2 linajes mieloides1–3 citopenias
<5 % de blastocitosBlastocitos (ninguno o <1 %)c
±15 % de sideroblastos en anillo
Sin bastones de AuerSin bastones de Auer
<1×109 monocitos/l
SMD con exceso de blastocitos-1 (SMD-EB-1)Displasia de un solo linaje o de linajes múltiplesCitopenia(s)
5–9 % de blastocitosc<5 % de blastocitosc
Sin bastones de AuerSin bastones de Auer
<1×109 monocitos/l
SMD con exceso de blastocitos-2 (SMD-EB-2)Displasia de un solo linaje o de linajes múltiplesCitopenia(s)
10–19 % de blastocitosd5–19% de blastocitosd
± bastones de Auerd± bastones de Auerd
<1×109 monocitos/l
SMD relacionado con del(5q) aisladaMegacariocitos normales o aumentados (núcleos hipolobulados)Anemia
<5 % de blastocitosBlastocitos (ninguno o <1 %)
Sin bastones de AuerRecuento de plaquetas normal o aumentado
del(5q) aislada
SMD sin clasificar (SMD-SC)Displasia de <10 % de las células en ≥1 del linaje mieloideCitopenias
Anomalías citogenéticas relacionadas con un diagnóstico de SMDe≤1 % de blastocitosc
<5 % de blastocitos
Entidad provisional: citopenia infantil resistente al tratamiento (RCC)fPara obtener más información, consultar el Cuadro 4.
Cuadro 4. Definiciones de los criterios diagnósticos mínimos para el síndrome mielodisplásico infantil (entidad provisional: citopenia infantil resistente al tratamiento)a
Linaje eritroideLinaje mieloideLinaje megacariocítico
aAdaptado de Baumann et al.[34]
bEs posible que se necesite una trepanación o biopsia de médula ósea porque la médula ósea en la citopenia infantil resistente al tratamiento (RCC) a menudo es hipocelular.
cLas características incluyen lobulación anómala del núcleo, células multinucleadas y puentes nucleares.
dPresencia de células pseudo–Pelger-Huet, citoplasma hipogranular o agranular, formas en banda gigantes.
eLos megacariocitos tienen tamaño variable y, a menudo, núcleos redondos o separados; la ausencia de megacariocitos no excluye el diagnóstico de RCC.
Aspirado de médula óseabDisplasia o cambios megaloblastoides en ≥10 % de los precursores eritroidescDisplasia en ≥10 % de los precursores granulocíticos o neutrófilosMicromegacariocitos y otras características displásicase
<5 % de blastocitosd
Biopsia de médula óseaHay precursores eritroidesNo hay criterios adicionalesMicromegacariocitos y otras características displásicase
Aumento de proeritroblastosPrueba inmunohistoquímica con expresión de CD61 y CD41
Aumento del número de mitosis
Sangre periféricaDisplasia en ≥10 % de los neutrófilos
<2% de blastocitos

Evaluación diagnóstica y molecular

Evaluación histoquímica

El tratamiento de los niños con LMA varía de forma significativa del tratamiento para la LLA. En consecuencia, es fundamental diferenciar la LMA de la LLA. Las tinciones histoquímicas especiales que se hacen en las muestras de médula ósea de los niños con leucemia aguda sirven para confirmar el diagnóstico. Las tinciones que se usan más a menudo son la mieloperoxidasa, el ácido peryódico de Schiff, el negro Sudán B y la esterasa. En la mayoría de los casos, el patrón de tinción con estas técnicas histoquímicas permitirá diferenciar la LMA de la LMMA y de la LLA (consultar el Cuadro 5). La inmunofenotipificación por citometría de flujo reemplazó la mayoría de las tinciones histoquímicas.
Cuadro 5. Modelos de tinción histoquímicaa
AMPLIAR
M0LMA, LPA (M1-M3)LMMA (M4)LMoA (M5)LEA (M6)LMCA (M7)LLA
LEA = leucemia eritroide aguda; LLA = leucemia linfoblástica aguda; LMA = leucemia mieloide aguda; LMCA = leucemia megacariocítica aguda; LMMA = leucemia mielomonocítica aguda; LMoA = leucemia monocítica aguda; LPA = leucemia promielocítica aguda; PAS = ácido peryódico de Schiff.
aPara obtener más información sobre el sistema de clasificación morfológica e histoquímica de la LMA, consultar la sección de este sumario sobre Sistema de clasificación para la leucemia mieloide aguda infantil del grupo French-American-British (FAB).
bEstas reacciones se inhiben con fluoruro.
Mieloperoxidasa-++----
Esterasas inespecíficas
Cloroacetato-++±---
Acetato de alfanaftol--bb-± b-
Negro Sudán B-++----
PAS--±±+-+

Evaluación inmunofenotípica

El uso de anticuerpos monoclonales para determinar los antígenos de la superficie celular de la LMA ayuda a reforzar el diagnóstico histológico. En el momento del proceso diagnóstico inicial de la leucemia, se deben emplear varios anticuerpos monoclonales específicos de cada linaje que detectan los antígenos celulares de la LMA, junto con un conjunto de marcadores específicos del linaje de los linfocitos T y B que ayuden a distinguir la LMA de la LLA y las leucemias agudas de linaje ambiguo. La expresión de diversas proteínas de antígenos de diferenciación (CD), consideradas como relativamente específicas de cada linaje de la LMA son CD33, CD13, CD14, CDw41 (o antiglicoproteína plaquetaria IIb/IIIa), CD15, CD11B, CD36 y antiglicoforina A. Los antígenos relacionados con el linaje de linfocitos B CD10, CD19, CD20, CD22 y CD24 a veces se encuentran en 10 a 20 % de los casos de LMA, pero a menudo no expresan inmunoglobulina monoclonal de superficie ni las cadenas pesadas de inmunoglobulina citoplasmática; de manera parecida, se encuentran antígenos relacionados con el linaje de linfocitos T CD2, CD3, CD5 y CD7 en 20 a 40 % de los casos de LMA.[35-37] La expresión anómala de los antígenos linfoideos en las células de LMA es relativamente frecuente pero, en general, no tiene importancia pronóstica.[35,36]
La inmunofenotipificación también puede ser útil para distinguir los subtipos FAB de la LMA que se presentan a continuación:
  • Las pruebas que identifican la presencia de HLA-DR contribuyen a identificar la LPA. En general, el HLA-DR se expresa en 75 a 80 % de las células de LMA, pero pocas veces en la LPA.[38,39] Además, la LPA se caracteriza por una expresión fuerte de CD33 y expresión de CD117 (c-Kit) en la mayoría de los casos, además de expresión heterogénea de CD13 y, a menudo, expresión baja o ausente de CD34, CD11a y CD18.[38,39] La LPA microgranular variante M3v por lo común expresa CD34 y CD2.[38,40]
  • Las pruebas para identificar la glicoproteína Ib, la glicoproteína IIb/IIIa o la expresión del antígeno del factor VIII son útiles para el diagnóstico de la M7 (leucemia megacariocítica).
  • La expresión de glucoforina es útil para el diagnóstico de la M6 (leucemia eritroide).[41]
Menos de 5 % de los casos de leucemia aguda infantil tiene linaje ambiguo, con características tanto de linaje mieloide como linfoide.[15-17] Estos casos se diferencian de la LLA con coexpresión mieloide en el sentido de que el linaje predominante no se puede determinar por medio de estudios inmunofenotípicos e histoquímicos. La definición de la leucemia de linaje ambiguo varía en los estudios, aunque la mayoría de los investigadores ahora usan los criterios establecidos por el European Group for the Immunological Characterization of leucemias (EGIL) o los criterios más estrictos de la OMS.[14,42,43] En la clasificación de la OMS, es necesaria la presencia de mieloperoxidasa para determinar el linaje mieloide. Este no es el caso para la clasificación del EGIL. En la revisión de 2016 de la clasificación de la OMS también se indica que, en algunos casos, la leucemia con el inmunofenotipo clásico de la LLA de células B a veces expresa un grado bajo de MPO sin otras características mieloides, pero no está clara la importancia clínica de estos hallazgos por lo que se debe tener precaución antes de designar estos casos como LAFM.[12]

Evaluación citogenética y anomalías moleculares

La leucemia mieloide aguda (LMA) es una enfermedad que se caracteriza por alteraciones cromosómicas recurrentes cuyo análisis citogenético convencional detecta anomalías citogenéticas estructurales y numéricas en 70 a 80 % de los niños con LMA; las translocaciones crípticas (por ejemplo, NUP98/NSD1CBFA2T3/GLIS2 y NUP98/KDM5A) y las mutaciones (por ejemplo, CEBPA y NPM1) reconocidas en época reciente dan cuenta de muchos de los casos restantes.[44,45]
Un concepto integrador de la función de mutaciones específicas en la LMA es que las mutaciones que promueven la proliferación (tipo I) y las mutaciones que bloquean el desarrollo mieloide normal (tipo II) son necesarias para la conversión plena de las células madre/precursoras hematopoyéticas en células de neoplasias malignas.[46,47] El fundamento de este concepto proviene de la observación de que, en general, hay exclusividad mutua dentro de cada tipo de mutación; es decir, hay una sola mutación de tipo I y una sola mutación de tipo II en cada caso. Los modelos de ingeniería genética de la LMA respaldan también este concepto ya que se necesitan situaciones cooperativas en lugar de mutaciones únicas para que se produzca la leucemia. Las mutaciones de tipo I se producen por lo común en los genes que participan en la transducción de señales de factores de crecimiento e incluyen mutaciones en los genes FLT3KITNRASKRAS y PTNP11.[48] Las alteraciones en los genes RASKIT y FLT3 son las mutaciones génicas más comunes que se presentan en niños con LMA.[49] Ejemplos de las alteraciones genómicas de tipo II incluyen translocaciones y mutaciones comunes relacionadas con un pronóstico favorable (t(8;21), inv(16), t(16;16), t(15;17), CEBPA y NPM1), así como los reordenamientos de MLL(KMT2A) (translocaciones y duplicación en tándem parcial) y los genes de fusión de NUP98.
Una caracterización molecular integral de casos de niños y adultos con LMA dio lugar a una caracterización de esta leucemia como una enfermedad que exhibe coincidencias y diferencias distintivas entre los grupos de edad.[45,49] Una diferencia es que los pacientes de LMA infantil exhiben tasas más bajas de mutaciones que los pacientes de LMA adultos; en la mayoría de los casos, los niños tienen menos de un cambio somático en las regiones de codificación de proteínas por megabase.[49] En la Figura 1 A) se ilustran la frecuencia de las mutaciones génicas recurrentes en adultos y niños con LMA, y se muestra que algunas mutaciones están presentes de manera diferencial en niños y adultos (por ejemplo, las mutaciones en IDH1TP53RUNX1 y DNMT3A son mucho más comunes en adultos que en niños).[45,49] En la Figura 1 B) se observa que las alteraciones genómicas comunes en adultos con LMA (mutaciones en FLT3-ITDNPM1 y CEBPA) son infrecuentes en niños menores de 5 años, pero su frecuencia aumenta con la edad.[45]
AMPLIARGráficos que muestran: A) prevalencia de las mutaciones relacionadas con LMA en  niños versus adultos y B) prevalencia por edad de mutaciones frecuentes relacionadas con LMA.
Figura 1. A) Prevalencia de mutaciones relacionadas con LMA en niños versus adultos; se observa una incidencia más baja de mutaciones en la LMA infantil. En el recuadro con rebordes se muestran dos mutaciones recién descubiertas en adultos que no se observan en la LMA de los niños. B) Prevalencia por edad de mutaciones frecuentes relacionadas con LMA. Reproducción de Pediatric Clinics of North America, Volume 62, Katherine Tarlock, Soheil Meshinchi, Pediatric Acute Myeloid Leukemia: Biology and Therapeutic Implications of Genomic Variants, Pages 75–93, Derechos de autor (2015), con autorización de Elsevier. Prevalence: prevalencia; Adults: adultos: Pediatric: niños; Mutation Type: tipo de mutación; Age Group: grupo de edad.
En la Figura 2 A) se observa una variación marcada por edad de la LLA con reordenamiento de MLL (KMT2A): la frecuencia es mucho más alta en los lactantes en comparación con los niños más grandes y los adultos.[45] Las LMA con cariotipo normal y factor de unión nuclear exhiben patrones opuestos: tasas muy bajas en la lactancia y tasas en aumento durante los primeros 20 años de vida. En la Figura 2 B) se observan las translocaciones crípticas específicas que ocurren principalmente en niños (NUP98/NSD1CBFA2T3/GLIS2 y NUP98/KDM5A) y que varían con la edad.[45]
AMPLIARGráficos de columnas en los que se observa la prevalencia por edad de translocaciones específicas de LMA: A) cariotípicas o B) crípticas.
Figura 2. Prevalencia por edad de translocaciones específicas de LMA: A) cariotípicas o B) crípticas. Reproducción de Pediatric Clinics of North America, Volume 62, Katherine Tarlock, Soheil Meshinchi, Pediatric Acute Myeloid Leukemia: Biology and Therapeutic Implications of Genomic Variants, Páginas 75–93, Derechos de autor (2015), con autorización de Elsevier. Prevalence: prevalencia; Age Group: grupo de edad; Adults: adultos.
El panorama genómico de los casos de LMA infantil puede cambiar desde el momento del diagnóstico hasta la recidiva. Las mutaciones detectables en el momento del diagnóstico ya no se encuentran en el momento de la recaída y, a la inversa, aparecen mutaciones nuevas en ese momento. Un hallazgo clave en un estudio de 20 casos para los que se disponía de datos de secuenciación en el momento del diagnóstico y de la recaída fue que la frecuencia de un variante alélica en el momento del diagnóstico se correlacionó de manera sólida con persistencia de las mutaciones en el momento de la recaída.[50] Casi 90 % de las variantes diagnósticas con una variación alélica mayor de 0,4 persistieron hasta la recaída, en comparación con solo 28 % en aquellas con frecuencia de variación alélica menor de 0,2 (P < 0,001). Esta observación es congruente con los resultados anteriores en los que se observó que la presencia de la mutación FLT3-ITD predice un pronóstico precario solo cuando hay una proporción alélica elevada de FLT3-ITD.
En los niños con LMA se hacen análisis genéticos de la leucemia (mediante métodos citogenéticos convencionales y métodos moleculares) porque las anomalías cromosómicas y moleculares son marcadores diagnósticos y pronósticos importantes.[44,51-56] En cerca de 75 % de los niños con LMA, se identifican anomalías cromosómicas clonales en los blastocitos que son útiles para definir subtipos con características particulares (por ejemplo, t(8;21), t(15;17), inv(16), anomalías 11q23 y t(1;22)). Las leucemias que tienen las anomalías cromosómicas t(8;21) e inv(16) se llaman leucemias con factor de unión nuclear; estas anomalías alteran el factor de unión nuclear (un factor de transcripción que participa en la diferenciación de células madre hematopoyéticas).
Las anomalías moleculares pueden ayudar a estratificar el riesgo y asignar el tratamiento. Por ejemplo, las mutaciones en NPM y CEBPA se relacionan con un desenlace favorable mientras que determinadas mutaciones en FLT3 acarrean riesgo alto de recaída; es posible que identificar estas mutaciones permita usar terapia dirigida.[57-60]
En la revisión de 2016 de la clasificación de las neoplasias mieloides y la leucemia aguda de la Organización Mundial de la Salud (OMS), se enfatiza que las translocaciones cromosómicas recurrentes de la LMA infantil tal vez sean únicas o tengan una prevalencia diferente de la LMA en adultos.[12] Las translocaciones cromosómicas de la LMA infantil que se identifican por análisis cromosómicos convencionales y las que son crípticas (se identifican solo con hibridación fluorescente in situ o técnicas moleculares) se presentan con mayor frecuencia en los niños que en los adultos. Estas translocaciones recurrentes se resumen en el Cuadro 6.[12] En las tres últimas filas del Cuadro 6, también se describen otras translocaciones recurrentes relativamente comunes que se observan en niños con LMA.[54,55,61]
Cuadro 6. Translocaciones cromosómicas frecuentes en la leucemia mieloide aguda infantil
Producto de la fusión génicaTranslocación cromosómicaPrevalencia en la LMA infantil (%)
aTranslocación cromosómica críptica; LMA: leucemia mieloide aguda.
Translocación de KMT2A(MLL)11q23.325,0
NUP98-NSD1at(5;11)(q35.3;p15.5)7,0
CBFA2T3-GLIS2ainv(16)(p13.3;q24.3)3,0
NUP98-KDM5A4at(11;12)(p15.5;p13.5)3,0
DEK-NUP214t(6;9)(p23;q34.1)1,7
RBM15(OTT)-MKL1(MAL)t(1;22)(p13.3;q13.1)0,8
MNX1-ETV6t(7;12)(q36.3;p13.2)0,8
KAT6A-CREBBPt(8;16)(p11.2;p13.3)0,5
RUNX1-RUNX1T1t(8;21)(q22;q22)13–14
CBFB-MYH11inv(16)(p13.1;q22) o t(16;16)(p13.1;q22)4–9
PML-RARAt(15;17)(q24;q21)6–11
A continuación, se presenta una descripción breve de las anomalías citogenéticas y moleculares recurrentes específicas. Las anomalías se enumeran según aquellas en uso clínico que identifican a los pacientes con un pronóstico favorable o desfavorable, seguidas de otras anomalías. Cuando se considera relevante se incluye la nomenclatura de la revisión de 2016 de la clasificación de las neoplasias mieloides y la leucemia aguda de la OMS.

Anomalías moleculares relacionadas con un pronóstico favorable

Las anomalías moleculares relacionadas con un pronóstico favorable son las siguientes:
  • La LMA con factor de unión nuclear (CBF) incluye casos con los genes de fusión RUNX1-RUNX1T1 y CBFB-MYH11 que alteran la actividad del factor de unión nuclear conformado por RUNX1 y CBFB. Estas son entidades específicas en la revisión de 2016 de la clasificación de las neoplasias mieloides y la leucemia aguda de la OMS.
    • LMA con t(8;21)(q22;q22.1); RUNX1-RUNX1T1: en las leucemias con t(8;21), el gen RUNX1 (AML1) del cromosoma 21 se fusiona con el gen RUNX1T1 (ETO) del cromosoma 8. La translocación t(8;21) se relaciona con el subtipo FAB M2 y con los sarcomas granulocíticos.[62,63] Los adultos que tienen LMA con t(8;21) tienen un pronóstico más favorable que los adultos que tienen otros tipos de LMA.[51,64] Los niños que tienen LMA con t(8;21) presentan un desenlace más favorable que los niños con una LMA caracterizada por cariotipos normales o complejos,[51,65-67] y una supervivencia general (SG) a 5 años de 74 a 90 %.[54,55,68] La translocación t(8;21) se presenta en cerca de 12 % de los niños con LMA.[54,55,68]
    • LMA con inv(16)(p13.1;q22) o t(16;16)(p13.1;q22); CBFB-MYH11: en las leucemias con inv(16), el gen CBF beta (CBFB) de la banda cromosómica 16q22 se fusiona con el gen MYH11 de la banda cromosómica 16p13. La translocación inv(16) se relaciona con el subtipo FAB M4Eo.[69] La inv(16) confiere un pronóstico favorable para adultos y niños con LMA,[51,65-67] y una SG a 5 años de casi 85 %.[54,55] La inv(16) se presenta en 7 a 9 % de los niños con LMA.[54,55,68] Como se indicó antes, los casos con CBFB-MYH11 y los casos con RUNX1-RUNX1T1 tienen mutaciones secundarias particulares; las mutaciones secundarias de CBFB-MYH11se restringen sobre todo a los genes que activan la señalización del receptor tirosina cinasa (NRASFLT3 y KIT).[70,71]
    • LMA con t(16;21)(q24;q22); RUNX1-CBFA2T3: en las leucemias con t(16;21)(q24;q22), el gen RUNX1 se fusiona con el gen CBFA2T3 y el perfil de expresión génica se relaciona de forma estrecha con los casos de LMA con t(8;21) y RUNX1-RUNX1T1.[72] Este tipo de leucemia se presenta a una mediana de 7 años de edad y es poco frecuente; representa entre 0,1 y 0,3 % de los casos pediátricos de LMA. De los 23 pacientes con RUNX1-CBFA2T3, 5 tuvieron LMA secundaria, que incluyó a 2 pacientes con diagnóstico primario de sarcoma de Ewing. La cohorte de 23 pacientes tuvo un desenlace favorable, con una SSC a 4 años de 77 % y una incidencia acumulada de recaída de 0 %.[72]
    Los subtipos RUNX1-RUNX1T1 y CBFB-MYH11 por lo común exhiben mutaciones en los genes que activan la señalización del receptor tirosina cinasa (por ejemplo, NRASFLT3 y KIT); los genes NRAS y KIT son los que más a menudo presentan mutaciones en ambos subtipos. Es posible que las mutaciones en KIT indiquen aumento del riesgo de fracaso del tratamiento para los pacientes de LMA con factor de unión nuclear, aunque la importancia pronóstica de las mutaciones en KIT tal vez dependa de la proporción del alelo mutado (desfavorable si la proporción es alta) o el tipo específico de mutación (desfavorable si hay mutaciones en el exón 17).[70,71] En un estudio con niños de LMA tipo RUNX1-RUNX1T1, se observaron mutaciones en KIT en 24 % de los casos (79 % eran mutaciones en el exón 17) y mutaciones en RAS en 15 % de los casos, pero ninguna mutación se relacionó de manera estrecha con el desenlace.[68]
    Aunque tanto los genes de fusión RUNX1-RUNX1T1 como CBFB-MYH11 alteran la actividad del factor de unión nuclear, los casos que presentan estas alteraciones genómicas exhiben mutaciones secundarias características.[70,71]
    • Los casos con RUNX1-RUNX1T1 también presentan mutaciones frecuentes en los genes que regulan la conformación de la cromatina (por ejemplo, ASXL1 y ASXL2) (40 % de los casos) y los genes que codifican componentes del complejo de la cohesina (20 % de los casos). Las mutaciones en ASXL1 y las mutaciones en ASXL2de los componentes del complejo de la cohesina son infrecuentes en las leucemias tipo CBFB-MYH11.[70,71]
    • En un estudio de 204 adultos con LMA tipo RUNX1-RUNX1T1 se encontró que las mutaciones en ASXL2 (presentes en 17 % de los casos) y las mutaciones en ASXL1 o ASXL2 (presentes en 25 % de los casos) carecen de importancia pronóstica.[73] Se informaron resultados similares, aunque con números más pequeños, en niños que tienen LMA con RUNX1-RUNX1T1 y mutaciones en ASXL1 y ASXL2.[74]
  • Leucemia promielocítica aguda (LPA) con PML-RARA: la LPA da cuenta de cerca de 7 % de los niños con LMA.[55,75] La LMA con t(15;17) se relaciona de manera invariable con la LPA, un subtipo específico de LMA que se trata de forma diferente a otros tipos de LMA debido a su marcada sensibilidad al trióxido de arsénico y los efectos diferenciadores del ácido transretinoico. Es posible que la translocación t(15;17) u otros reordenamientos cromosómicos más complejos conduzcan a la producción de una proteína de fusión que afectan el receptor α del ácido retinoico y la PML.[76] En la revisión de 2016 de la OMS no se incluyó la designación citogenética t(15;17) para enfatizar la importancia de la fusión PML-RARA, que tal vez sea críptica o surja de cambios cariotípicos complejos.[12]
    Se ha vuelto una práctica estándar el empleo de la reacción en cadena de la polimerasa con retrotranscripción (RCP-RT) cuantitativa para identificar los transcritos de PML-RARA.[77] La RCP-RT cuantitativa permite identificar tres variantes frecuentes de los transcritos; se usa para vigilar la reacción al tratamiento y con el fin de detectar temprano una recidiva molecular.[78] Otras translocaciones mucho menos comunes que afectan el receptor α del ácido retinoico también pueden conducir a la LPA (por ejemplo, t(11;17)(q23;q21) que compromete el gen PLZF).[79-81] Es importante identificar los casos que tienen t(11;17)(q23;q21) debido a que presentan una disminución de la sensibilidad al ácido transretinoico.[76,79]
  • LMA con mutación en NPM1: la NPM1 es una proteína que se ha relacionado con el ensamblaje y trasporte proteico en los ribosomas; además es una chaperona molecular que previene la agregación proteica en el nucléolo. Se pueden utilizar métodos inmunohistoquímicos para identificar con precisión a los pacientes que tienen mutaciones en NPM1 cuando se demuestra la ubicación citoplasmática de NPM.[82] Las mutaciones en la proteína NPM1 que reducen su ubicación nuclear se relacionan de manera primaria con un subconjunto de LMA con un cariotipo normal, que no expresa CD34,[83] y presenta mejor pronóstico cuando no hay mutaciones en FLT3 con duplicación interna en tándem (ITD) en adultos jóvenes y de mediana edad.[83-88]
    Los estudios de niños con LMA indican una menor tasa de mutaciones en NPM1 en los niños en comparación con los adultos que tienen características citogenéticas normales. Las mutaciones en NPM1 afectan a casi 8 % de los pacientes de LMA infantil y son infrecuentes en niños menores de 2 años.[47,57,58,89] Las mutaciones en NPM1 se relacionan con un pronóstico favorable en pacientes de LMA caracterizada por un cariotipo normal.[47,57,58] Se publicaron informes contradictorios sobre la importancia pronóstica en la población pediátrica de una mutación en NPM1 cuando también hay mutación FLT3-ITD. En un estudio se informó que una mutación en NPM1 no anula por completo el pronóstico precario que acarrea la mutación FLT3-ITD;[57,90] sin embargo, en otros estudios se observó que no hay efecto de la mutación FLT3-ITD sobre el pronóstico favorable relacionado con la mutación en NPM1.[47,49,58]
  • LMA con mutaciones bialélicas en CEBPA: las mutaciones en el gen de la proteína α de fijación a CCAAT/potenciador (CEBPA) se producen en un subgrupo de niños y adultos que tienen LMA con características citogenéticas normales.[91] En los adultos menores de 60 años, cerca de 15 % de los casos de LMA con características citogenéticas normales tienen mutaciones en CEBPA.[87] El desenlace para los adultos de LMA con mutaciones en CEBPA es relativamente favorable y similar al de los pacientes que tienen leucemias con factor de unión nuclear.[87,92] En los estudios de adultos con LMA se demostró que la mutación doble en CEBPA, pero no la mutación en un solo alelo, se relacionó de modo independiente con un pronóstico favorable de la LMA;[93-96] ello llevó a que, en la revisión de 2016 de la OMS, se incluyeran las mutaciones bialélicas como una característica distinta para definir la enfermedad.[12]
    Hay mutaciones en CEBPA en 5 a 8 % de los niños con LMA y se encuentran casi siempre en el subtipo de LMA con características citogenéticas normales, tipo FAB M1 o M2; 70 a 80 % de los pacientes pediátricos tienen mutaciones en ambos alelos, lo que pronostica una supervivencia significativamente mejor, similar al efecto observado en los estudios de adultos.[59,97] Aunque en un estudio numeroso las mutaciones de ambos alelos en CEBPA o en un solo alelo se relacionaron con un pronóstico favorable en niños con LMA,[59] en otro estudio se observó un desenlace más precario para los pacientes que tienen mutaciones en un solo alelo de CEBPA.[97] Sin embargo, en estos dos estudios participaron muy pocos niños con mutaciones en un solo alelo (solo 13 en total); ello hace que la conclusión sea prematura con respecto a la importancia pronóstica para los niños con mutaciones en un solo alelo de CEBPA.[59] En los pacientes con diagnóstico reciente de LMA con mutación de ambos alelos en CEBPA, se deben considerar los exámenes de detección de alteraciones de línea germinal y el cuestionario habitual sobre los antecedentes familiares, porque entre 5 y 10 % de estos pacientes tienen una mutación de la línea germinal en CEBPA.[91]
  • Leucemia mieloide relacionada con el síndrome de Down (mutaciones en GATA1):hay mutaciones en GATA1 en la mayoría, si no en todos, los niños con síndrome de Down que tienen mielopoyesis anormal transitoria (MAT) o leucemia megacarioblástica aguda (LMCA).[98-101] También se encuentran mutaciones en GATA1 en 9 % de los niños con LMCA que no tienen síndrome de Down y 4 % de los adultos con LMCA (se presentó de manera simultánea con una amplificación de la región crítica del síndrome de Down en el cromosoma 21 en 9 de 10 casos).[102] El gen GATA1 forma un factor de transcripción necesario para el desarrollo normal de los eritrocitos, megacariocitos, eosinófilos y mastocitos.[103]
    Las mutaciones en GATA1 confieren un aumento de la sensibilidad a la citarabina por el descenso regulado en la expresión de la citidina desaminasa, lo que quizá proporcione una explicación para el desenlace superior de los niños con síndrome de Down y LMA M7 que reciben tratamiento con regímenes que contienen citarabina.[104]

Anomalías moleculares relacionadas con un pronóstico desfavorable

Las anomalías moleculares relacionadas con un pronóstico desfavorable son las siguientes:
  • Cromosomas 5 y 7: las anomalías cromosómicas relacionadas con un pronóstico precario en adultos con LMA incluyen las que afectan el cromosoma 5 (monosomía 5 y del(5q)) y el cromosoma 7 (monosomía 7).[51,64,105] Estos subgrupos citogenéticos representan entre 2 y 4 % de los casos de LMA infantil, respectivamente, y también se relacionan con un pronóstico precario en los niños.[54,64,105-109]
    En el pasado, se consideró que los pacientes con del(7q) también tenían un riesgo alto de fracaso del tratamiento; además, los datos de los adultos con LMA apoyan un pronóstico precario tanto para la del(7q) como para la monosomía 7.[56] Sin embargo, los desenlaces en niños con del(7q), pero sin monosomía 7, son comparables a los de otros niños con LMA.[55,108] La presencia de la del(7q) no anula la importancia pronóstica de las características citogenéticas favorables (por ejemplo, inv(16) y t(8;21)).[51,108,110]
    Las anomalías en los cromosomas 5 y 7 carecen de importancia pronóstica para los pacientes de LMA con síndrome de Down de 4 años de edad y menos.[111]
  • LMA con inv(3)(q21.3;q26.2) o t(3;3)(q21.3;q26.2); GATA2MECOM: el gen MECOM del cromosoma 3q26 codifica dos proteínas que regulan la transcripción: la EVI1 y la MDS1-EVI1. Las anomalías inv(3) y t(3;3) producen sobrexpresión de EVI1 y disminuyen la expresión de GATA2.[112,113] Estas anomalías se vinculan con un pronóstico precario en adultos con LMA,[51,64,114] pero son muy infrecuentes en niños (<1 % de casos de LMA infantil).[54,66,115]
    Las anomalías que afectan MECOM se detectan en algunos casos de LMA que tienen otras anomalías 3q y también se relacionaron con un pronóstico precario.
  • Mutaciones en FLT3: la presencia de una mutación FLT3-ITD se relaciona con un pronóstico precario en los adultos con LMA;[116] en particular, cuando ambos alelos están mutados o la proporción entre el alelo mutado y el alelo normal es alta.[117,118] Las mutaciones FLT3-ITD también conllevan un pronóstico precario en niños con LMA.[60,90,119-122] La frecuencia de las mutaciones FLT3-ITD en los niños es inferior a la de los adultos; en especial, para los niños menores de 10 años en quienes 5 a 10 % de los casos tienen la mutación (en comparación con casi 30 % de los adultos).[121-123]
    La importancia pronóstica de FLT3-ITD se modifica por la presencia de otras alteraciones genómicas recurrentes. La prevalencia de FLT3-ITD aumenta en ciertos subtipos genómicos de LMA infantil, incluso en los casos que tienen el gen de fusión NUP98-NSD1; de ellos, 80 a 90 % presentan FLT3-ITD.[124,125] Cerca de 15 % de los pacientes con FLT3-ITD también tienen NUP98-NSD1; los pacientes con ambas alteraciones, FLT3-ITD y NUP98-NSD1, tienen un pronóstico más precario que los pacientes que presentan FLT3-ITD sin NUP98-NSD1.[125] Para los pacientes con FLT3-ITD, la presencia de mutaciones en WT1 o fusiones NUP98-NSD1 se relaciona con un desenlace más precario (tasas de SSC inferiores a 25 %) que el de los pacientes con FLT3-ITD, pero sin estas alteraciones.[49] Por el contrario, cuando FLT3-ITD se acompaña de mutaciones en NPM1, el desenlace es relativamente favorable y similar al de los casos de LMA infantil sin FLT3-ITD.[49]
    En la LPA, las mutaciones FLT3-ITD y las mutaciones puntuales se producen en 30 a 40 % de los niños y adultos.[117,120,121,126-130] La presencia de las mutaciones FLT3-ITD tiene una relación sólida con la variante microgranular (M3v) de la LPA y con la hiperleucocitosis.[120,128,131,132] Todavía no está claro si las mutaciones en FLT3entrañan un pronóstico más precario para los pacientes de LPA que reciben el tratamiento contemporáneo con ácido transretinoico y trióxido de arsénico.[126,127,130,131,133-136]
    En niños y adultos con LMA también se identificaron mutaciones activadoras puntuales en FLT3, aunque la importancia clínica de estas mutaciones no está bien definida. Algunas de estas mutaciones puntuales parecen ser específicas de pacientes pediátricos.[49]
  • LMA con t(16;21)(p11;q22); FUS-ERG: en leucemias con t(16;21)(p11;q22), el gen FUS se fusiona con el gen ERG y produce un subtipo distinto de LMA con un perfil de expresión génica que se agrupa por separado de otros subgrupos citogéneticos.[72] Este tipo de leucemia se presenta con una mediana de edad entre los 8 y 9 años, y es poco frecuente; representa entre 0,3 y 0,5 % de los casos pediátricos de LMA. En una cohorte de 31 pacientes de LMA con FUS-ERG, el desenlace fue precario; la SSC a 4 años fue de 7 % y la incidencia acumulada de recaída fue de 74 %.[72]

Otras anomalías moleculares de la leucemia mieloide infantil

Otras anomalías moleculares de la LMA infantil son las siguientes:
  • Reordenamientos del gen KMT2A (MLL): en casi 20 % de los niños con LMA hay un reordenamiento del gen KMT2A.[54,55] Estos casos, incluso la mayoría de las LMA secundarias a la epipodofilotoxina,[137] por lo general se relacionan con una diferenciación monocítica (FAB M4 y M5). También se notificaron reordenamientos de KMT2A en casi 10 % de los pacientes de LMCA con FAB M7 (consultar a continuación).[102,138]
    En la población de LMA infantil, la translocación más frecuente, que representa casi 50 % de los casos con reordenamiento del gen KMT2A, es la t(9;11)(p22;q23); en esta, el gen KMT2A se fusiona con el gen MLLT3(AF9).[139] En la revisión de 2016 de la OMS, se definió la LMA con t(9;11)(p21.3;q23.3); MLLT3-KMT2A como una entidad diferenciada. Sin embargo, se han identificado más de 50 parejas de fusión diferentes para el gen KMT2Aen pacientes de LMA.
    En el entorno de la LMA infantil, la mediana de edad de los casos con reordenamiento 11q23/KMT2A es de cerca de 2 años; la mayoría de los subgrupos de translocaciones tienen una mediana de edad de menos de 5 años en el momento del cuadro clínico inicial.[139] No obstante, se notificaron medianas de edad mucho más altas en el momento del cuadro clínico inicial de casos pediátricos que tienen t(6;11)(q27;q23) (12 años) y t(11;17)(q23;q21) (9 años).[139]
    Por lo general, se notifica que el desenlace para los pacientes de LMA de novo con reordenamiento del gen KMT2A es similar al de otros pacientes de LMA.[51,54,139,140] Sin embargo, como el gen KMT2A puede participar en translocaciones con muchas parejas de genes de fusión, la pareja específica de gen de fusión quizá influya en el pronóstico, como se demostró en un gran estudio retrospectivo internacional de evaluación del desenlace de la LMA en 756 niños con 11q23- o reordenamiento de KMT2A.[139] Por ejemplo, los casos con t(1;11)(q21;q23), que representan 3 % de todos los casos de LMA con reordenamiento 11q23/KMT2A, exhibieron un desenlace muy favorable con una supervivencia sin complicaciones (SSC) a 5 años de 92 %.
    Si bien los informes de grupos de ensayos clínicos individuales varían en cuanto a la descripción del pronóstico favorable de los pacientes de LMA que tienen t(9;11)(p21.3;q23.3)/MLLT3-KMT2A, en un estudio retrospectivo internacional no se logró corroborar el pronóstico favorable para este subgrupo.[51,54,139,141-143] En un estudio de colaboración internacional para evaluar la LMCA infantil, se observó que la presencia de t(9;11), que se identificó en casi 5 % de los casos de LMCA, se relacionó con un desenlace inferior al de otros casos de LMCA.[138]
    Los subgrupos de LMA con reordenamiento de KMT2A que se vinculan con desenlaces más precarios son los siguientes:
    • Los casos con la translocación t(10;11) conforman un grupo de riesgo alto de recaída en la médula ósea y el SNC.[51,55,144] Algunos casos con la translocación t(10;11) tienen una fusión del gen KMT2A con AF10-MLLT10 en 10p12, mientras que otros tienen una fusión de KMT2A con ABI1 en 10p11.2.[145,146] En un estudio retrospectivo internacional se encontró que estos casos, que se manifiestan a una mediana de edad de cerca de 1 año, tienen una SSC a 5 años de 20 a 30 %.[139]
    • Las pacientes con t(6;11)(q27;q23) tienen un pronóstico precario, con una SSC a 5 años de 11 %.
    • Las pacientes con t(4;11)(q21;q23) también tienen un pronóstico precario, con una SSC a 5 años de 29 %.[139]
    • En un estudio de seguimiento llevado a cabo por un grupo de colaboración internacional, se demostró que otras anomalías citogenéticas también afectan los desenlaces de los niños con translocaciones de KMT2A; los cariotipos complejos y la trisomía 19 predicen un desenlace precario y la trisomía 8 predice un desenlace más favorable.[147]
  • LMA con t(6;9)(p23;q34.1); DEK-NUP214: la t(6;9) conduce a la formación de la proteína de fusión DEK-NUP214 que se relaciona con la leucemia.[148,149] Este subgrupo de LMA se vinculó con un pronóstico precario en adultos con LMA [148,150,151] y se presenta con poca frecuencia en los niños (menos de 1 % de los casos de LMA). La mediana de edad de los niños con LMA que tienen DEK-NUP214 es de 10 a 11 años; cerca de 40 % de los pacientes pediátricos tienen FLT3-ITD.[152,153]
    La LMA con t(6;9) se relaciona con un riesgo alto de fracaso del tratamiento en los niños, sobre todo para aquellos que no pasan a recibir un trasplante alogénico de células madre.[54,149,152,153]
  • Subgrupos moleculares de leucemia megacarioblástica aguda (LMCA) sin síndrome de Down: la LMCA representa cerca de 10 % de las LMA infantiles y tiene gran heterogeneidad molecular. A continuación, se enumeran los subtipos moleculares de LMCA.
    • CBFA2T3-GLIS2: la fusión CBFA2T3-GLIS2 surge de una inversión críptica del cromosoma 16 (inv(16)(p13.3q24.3)).[154-158] Se presenta de manera casi exclusiva en la LMCA sin síndrome de Down; representa entre 16 y 27 % de las LMCA infantiles y se manifiesta a una mediana de edad de 1 año.[102,156,159,160] En dos informes con 28 pacientes, se relacionó con un desenlace desfavorable [102,154,158-160] y presentó una SSC a 2 años de menos de 20 %.[102,158,160]
    • Reordenamiento de KMT2A: los casos con translocaciones de KMT2A representan 10 a 17 % de las LMCA infantiles; el gen MLLT3 (AF9) es la pareja de fusión más frecuente del gen KMT2A.[102,138,159] En los niños con LMCA, los casos con reordenamiento de KMT2A se relacionan con un desenlace más precario, con una tasa de SG a los 4 o 5 años de casi 30 %.[102,138,159] En una colaboración internacional sobre la LMCA infantil, se observó que la presencia de t(9;11)/MLLT3-KMT2A, que ocurre en cerca de 5 % de los casos de LMCA (n = 21), se vincula con un desenlace más precario (SG a 5 años, casi 20 %) en comparación con otros casos de LMCA y otros reordenamientos de KMT2A (n = 17), cada uno con una SG a 5 años de 50 a 55 %.[138] No se observó un desenlace más precario para los pacientes con otros reordenamientos de KMT2A (n = 17).
    • NUP98-KDM5A4: se observó NUP98-KDM5A4 en cerca de 10 % de los casos de LMCA infantil [102,159] y en tasas mucho más bajas para los casos sin LMCA.[160] Los casos con NUP98-KDM5A4 presentaron una tendencia a un pronóstico más precario, aunque el número pequeño de casos estudiados restringió la confianza de esta determinación.[102,159]
    • RBM15-MKL1: la translocación t(1;22)(p13;q13) que produce RBM15-MKL1 es infrecuente (<1% de las LMA infantiles) y se limita a la leucemia megacariocítica aguda (LMCA).[54,160-165] En estudios se observó que la t(1;22)(p13;q13) se encuentra en 10 a 18 % de los niños con LMCA en quienes se pueden evaluar las características citogenéticas o de genética molecular.[102,138,159] La mayoría de los casos de LMCA con t(1;22) se presentan en lactantes con una mediana de edad en el momento del cuadro clínico inicial (4 a 7 meses) menor que la de otros niños con LMCA.[138,156,166] También se han notificado casos en los que se detectan los transcritos de la fusión RBM15-MKL1 en ausencia de t(1;22) porque estos pacientes jóvenes por lo general tienen una médula ósea hipoplásica.[163]
      En un estudio retrospectivo de colaboración internacional de 51 casos con t(1;22), se informó que los pacientes con esta anomalía tuvieron una SSC a 5 años de 54,5 % y una SG de 58,2 %, similar a las tasas de otros niños con LMCA.[138] En otro análisis retrospectivo internacional de 153 casos de LMCA sin síndrome de Down para los que se contaba con muestras para análisis molecular, la SSC a 4 años para los pacientes con t(1;22) fue de 59 % y la SG fue de 70 %; estas fueron significativamente mejores que las de los pacientes con LMCA que tenían otras anomalías genéticas específicas (CBFA2T3/GUS2NUP98/KDM5A4, reordenamientos de KMT2A y monosomía 7).[159]
    • Reordenamiento de HOX: en un informe, los casos con una fusión génica que afecta el complejo génico HOX representaron 15 % de las LMCA infantiles.[102] En este informe se observó que estos pacientes parecen tener un pronóstico relativamente favorable, aunque el número pequeño de casos estudiados restringió la confianza de esta determinación.
    • Mutación en GATA1: en los niños pequeños (mediana de edad, 1–2 años) con LMCA sin síndrome de Down surgen mutaciones interruptoras en GATA1 que se relacionan con amplificación de la región crítica del síndrome de Down en el cromosoma 21.[102] Estos pacientes representan cerca de 10 % de las LMCA sin síndrome de Down y tienen un pronóstico favorable si no hay, de manera simultánea, genes de fusión con pronóstico desfavorable; aunque el número de pacientes estudiados fue bajo (n = 8).[102]
  • t(8;16) (MYST3-CREBBP): la translocación t(8;16) fusiona el gen MYST3 del cromosoma 8p11 con el gen CREBBP del cromosoma 16p13. La LMA con t(8;16) es infrecuente en niños. En un estudio internacional del Berlin-Frankfurt-Münster (BFM) con 62 niños que tenían LMA, la presencia de esta translocación se relacionó con una edad menor en el momento del diagnóstico (mediana, 1,2 años), fenotipo FAB M4/M5, eritrofagocitosis, leucemia cutánea y coagulación intravascular diseminada.[167] El desenlace para los niños que tienen LMA con t(8;16) es similar al de otros tipos de LMA.
    Una proporción importante de los lactantes que reciben un diagnóstico de LMA con t(8;16) durante el primer mes de vida remiten de manera espontánea, aunque es posible que la enfermedad recidive meses o años después.[167-173] Estas observaciones indican que se podría considerar una estrategia de observar y esperarpara los casos de LMA con t(8;16) diagnosticada en el período neonatal si se puede garantizar una vigilancia estrecha a largo plazo.[167]
  • t(7;12)(q36;p13): la translocación t(7;12)(q36;p13) afecta el gen ETV6 en el cromosoma 12p13 y puntos de ruptura variables de la región MNX1 en el cromosoma 7q36 (HLXB9).[174] Es posible que la translocación sea críptica en un cariotipado convencional y, en ocasiones, solo se confirma mediante HFIS.[175-177] Esta alteración se produce de manera casi exclusiva en niños menores de 2 años, es mutuamente excluyente del reordenamiento de KMT2A (MLL) y se relaciona con un riesgo alto de fracaso del tratamiento.[47,54,55,175,176,178]
  • Fusiones del gen NUP98: se notificó que NUP98 forma genes de fusión leucemógenos con más de 20 parejas de genes diferentes.[179] En el entorno de la LMA infantil, los dos genes de fusión más comunes son NUP98-NSD1 y NUP98-KDM5A4 (JARID1A); el primero se observó en un informe en cerca de 15 % de casos de LMA infantil con características citogenéticas normales y el segundo se observó en cerca de 10 % de las LMCA infantiles (consultar más arriba).[102,124,156] Los casos de LMA con cualquier gen de fusión de NUP98 exhiben una expresión alta de los genes HOXA y HOXB; ello indica un fenotipo de células madre.[149,156]
    El gen de fusión NUP98-NSD1, que a menudo es críptico en el análisis citogenético, resulta de la fusión de NUP98 (cromosoma 11p15) con NSD1 (cromosoma 5q35).[124,125,149,180-183] Esta alteración se produce en cerca de 4 a 7 % de los casos de LMA infantil.[12,61,124,149,182] La frecuencia más alta en la población pediátrica se ubica en el grupo de 5 a 9 años (casi 8 %); y la frecuencia más baja se ubica en el grupo de niños más pequeños (casi 2 % en niños menores de 2 años). En un estudio, los casos que tienen NUP98-NSD1 presentaron al inicio un recuento alto de glóbulos blancos (GB) (mediana, 147 × 109/l).[124,125] La mayoría de los casos de LMA con NUP98-NSD1 no exhiben anomalías citogenéticas.[124,149,180] Un porcentaje alto de los casos con NUP98-NSD1 (74 a 90 %) exhiben FLT3-ITD.[61,124,125]
    En un estudio que incluyó a 12 niños de LMA con NUP98-NSD1, se notificó que, a pesar de que todos los pacientes alcanzaron una RC, la presencia de NUP98-NSD1 predijo de forma independiente un pronóstico precario; los niños que tenían LMA con NUP98-NSD1 tuvieron un riesgo alto de recaída y una SSC a 4 años de casi 10 %.[124] En otro estudio que incluyó a niños (n = 38) y adultos (n = 7) que tenían LMA con NUP98-NSD1, la presencia de NUP98-NSD1 y de FLT3-ITD predijo de forma independiente un pronóstico precario; los pacientes que tenían ambas lesiones tuvieron una tasa baja de RC (casi 30 %) y una SSC a 3 años baja (casi 15 %).[125]
  • Mutaciones en RAS: aunque se identificaron mutaciones en RAS en 20 a 25 % de los pacientes de LMA, la importancia pronóstica de estas mutaciones no se conoce bien.[47,184-186] En casos de LMA infantil se observaron más mutaciones en NRAS que en KRAS.[47,48] Las mutaciones en RAS se producen con una frecuencia similar a todos los subtipos de alteraciones de tipo II, excepto para la LPA: en esta, casi nunca se encuentran mutaciones en RAS.[47]
  • Mutaciones en KIT: las mutaciones en KIT se producen en casi 5 % de los casos de LMA, pero en 10 a 40 % de los casos de LMA con anomalías en el factor de unión nuclear.[47,48,187,188]
    La presencia de mutaciones activadoras en KIT en adultos con este subtipo de LMA se relaciona con un pronóstico más precario que para los pacientes de LMA con factor de unión nuclear sin mutaciones en KIT.[187,189,190] Aún está por aclararse la importancia pronóstica de las mutaciones en KIT en los casos de LMA infantil con factor de unión nuclear,[191-194] aunque en el estudio pediátrico más grande hasta la fecha se observó ausencia de importancia pronóstica de las mutaciones en KIT.[195]
  • Mutaciones en WT1: en los adultos, WT1, una proteína con dedos de zinc que regula la transcripción génica, está mutada en cerca de 10 % de los casos de LMA con características citogenéticas normales.[196-199] En algunos estudios, pero no en todos, se observó que la mutación en WT1 [196,197,199] es [198] un predictor independiente de una supervivencia sin enfermedad, SSC, y SG más precarias en los adultos.
    En los niños con LMA, se observan mutaciones en WT1 en cerca de 10 % de los casos.[200,201] Los casos con mutaciones en WT1 ocurren con mucha frecuencia en los niños con características citogenéticas normales y FLT3-ITD, pero son menos comunes en los niños menores de 3 años.[200,201] Los casos de LMA con NUP98-NSD1 tienen abundantes mutaciones FLT3-ITD y mutaciones en WT1.[124] En análisis univariantes, las mutaciones en WT1 predicen un desenlace más precario en los pacientes pediátricos; sin embargo, no está clara la importancia como factor de pronóstico independiente del estado de la mutación en WT1 porque este estado tiene una relación sólida con FLT3-ITD y se vincula con NUP98-NSD1.[124,200,201] En el estudio más grande sobre mutaciones en WT1 de niños con LMA, se observó que los niños que tienen mutaciones en WT1 pero no exhiben FLT3-ITD presentan desenlaces similares a los niños que tienen mutaciones en WT1; por otra parte, otros niños que tienen al mismo tiempo una mutación en WT1 y una mutación FLT3-ITD presentaron tasas de supervivencia de menos de 20 %.[200]
  • Mutaciones en DNMT3A: se identificaron mutaciones en el gen de la citosina metiltransferasa del DNA (DNMT3A) en cerca de 20 % de los adultos de LMA; estas mutaciones son infrecuentes en los pacientes con características citogenéticas favorables, pero se presentan en un tercio de los adultos con características citogenéticas de riesgo intermedio.[202] Las mutaciones en este gen tienen una relación independiente con un desenlace precario.[202-204] Las mutaciones en DNMT3A prácticamente no se presentan en los niños.[205]
  • Mutaciones en IDH1 y IDH2: las mutaciones en IDH1 y IDH2, que codifican la isocitrato deshidrogenasa, se presentan en casi 20 % de los adultos con LMA [206-210] y son muy frecuentes en los pacientes que también tienen mutaciones en NPM1.[207,208,211] Las mutaciones específicas que se producen en IDH1 e IDH2 crean una actividad enzimática nueva que promueve la conversión del α-cetoglutarato en 2-hidroxiglutarato.[212,213] Esta actividad nueva induce un fenotipo de hipermetilación de ADN similar al que se observa en los casos de LMA con mutaciones de pérdida de la función en TET2.[211]
    Las mutaciones en IDH1 y IDH2 son infrecuentes en la LMA infantil: se presentan en 0 a 4 % de los casos.[205,214-218] No hay indicación de un efecto pronóstico negativo de las mutaciones en IDH1 e IDH2 en los niños con LMA.[214]
  • Mutaciones en CSF3R: el gen CSF3R codifica el receptor del factor estimulante de colonias de granulocitos (G-CSF); se observan mutaciones activadoras en CSF3R en 2 a 3 % de los casos de LMA infantil.[219] Estas mutaciones aumentan la señalización mediada por el receptor G-CSF; se presentan sobre todo en la LMA con mutaciones en CEBPA o anomalías del factor de unión nuclear (RUNX1-RUNX1T1 y CBFB-MYH11).[219] Las características clínicas y el pronóstico de los pacientes con mutaciones en CSF3R no es significativamente diferente a las de los pacientes que no tienen mutaciones en CSF3R.
    También se observan mutaciones activadoras en CSF3R en los pacientes con neutropenia congénita grave. Estas mutaciones no causan la neutropenia congénita grave; más bien, surgen como mutaciones somáticas y pueden reflejar un paso inicial en la vía que lleva a la LMA.[220] En un estudio de pacientes con neutropenia congénita grave, 34 % de los pacientes que no tenían una neoplasia maligna mieloide exhibieron mutaciones en CSF3R en neutrófilos y células mononucleares de sangre periférica, mientras que 78 % de los pacientes con una neoplasia maligna mieloide exhibieron mutaciones en CSF3R.[220] En un estudio de 31 pacientes con neutropenia congénita grave que padecían de LMA o SMD, se observaron mutaciones en CSF3R en cerca de 80 %; también se observó una frecuencia alta de mutaciones en RUNX1 (cerca de 60 %); ello indica cooperación entre las mutaciones en CSF3R y RUNX1 para que sobrevenga una leucemia en el contexto de una neutropenia congénita grave.[221]

Bibliografía
  1. Bennett JM, Catovsky D, Daniel MT, et al.: Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 33 (4): 451-8, 1976. [PUBMED Abstract]
  2. Bennett JM, Catovsky D, Daniel MT, et al.: Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 103 (4): 620-5, 1985. [PUBMED Abstract]
  3. Bennett JM, Catovsky D, Daniel MT, et al.: Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med 103 (3): 460-2, 1985. [PUBMED Abstract]
  4. Bennett JM, Catovsky D, Daniel MT, et al.: A variant form of hypergranular promyelocytic leukaemia (M3) Br J Haematol 44 (1): 169-70, 1980. [PUBMED Abstract]
  5. Cheson BD, Bennett JM, Kopecky KJ, et al.: Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol 21 (24): 4642-9, 2003. [PUBMED Abstract]
  6. Bennett JM, Catovsky D, Daniel MT, et al.: Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO) Br J Haematol 78 (3): 325-9, 1991. [PUBMED Abstract]
  7. Kaleem Z, White G: Diagnostic criteria for minimally differentiated acute myeloid leukemia (AML-M0). Evaluation and a proposal. Am J Clin Pathol 115 (6): 876-84, 2001. [PUBMED Abstract]
  8. Vardiman JW, Harris NL, Brunning RD: The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100 (7): 2292-302, 2002. [PUBMED Abstract]
  9. Jaffe ES, Harris NL, Stein H, et al., eds.: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press, 2001. World Health Organization Classification of Tumours, 3.
  10. Hasle H, Niemeyer CM, Chessells JM, et al.: A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia 17 (2): 277-82, 2003. [PUBMED Abstract]
  11. Arber DA, Vardiman JW, Brunning RD: Acute myeloid leukaemia with recurrent genetic abnormalities. In: Swerdlow SH, Campo E, Harris NL, et al., eds.: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: International Agency for Research on Cancer, 2008, pp 110-23.
  12. Arber DA, Orazi A, Hasserjian R, et al.: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127 (20): 2391-405, 2016. [PUBMED Abstract]
  13. Béné MC: Biphenotypic, bilineal, ambiguous or mixed lineage: strange leukemias! Haematologica 94 (7): 891-3, 2009. [PUBMED Abstract]
  14. Borowitz MJ, Béné MC, Harris NL: Acute leukaemias of ambiguous lineage. In: Swerdlow SH, Campo E, Harris NL, et al., eds.: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: International Agency for Research on Cancer, 2008, pp 150-5.
  15. Gerr H, Zimmermann M, Schrappe M, et al.: Acute leukaemias of ambiguous lineage in children: characterization, prognosis and therapy recommendations. Br J Haematol 149 (1): 84-92, 2010. [PUBMED Abstract]
  16. Rubnitz JE, Onciu M, Pounds S, et al.: Acute mixed lineage leukemia in children: the experience of St Jude Children's Research Hospital. Blood 113 (21): 5083-9, 2009. [PUBMED Abstract]
  17. Al-Seraihy AS, Owaidah TM, Ayas M, et al.: Clinical characteristics and outcome of children with biphenotypic acute leukemia. Haematologica 94 (12): 1682-90, 2009. [PUBMED Abstract]
  18. Matutes E, Pickl WF, Van't Veer M, et al.: Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood 117 (11): 3163-71, 2011. [PUBMED Abstract]
  19. Hrusak O, De Haas V, Stancikova J, et al.: International cooperative study identifies treatment strategy in childhood ambiguous lineage leukemia. Blood : , 2018. [PUBMED Abstract]
  20. Bennett JM, Catovsky D, Daniel MT, et al.: Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 51 (2): 189-99, 1982. [PUBMED Abstract]
  21. Mandel K, Dror Y, Poon A, et al.: A practical, comprehensive classification for pediatric myelodysplastic syndromes: the CCC system. J Pediatr Hematol Oncol 24 (7): 596-605, 2002. [PUBMED Abstract]
  22. Bennett JM: World Health Organization classification of the acute leukemias and myelodysplastic syndrome. Int J Hematol 72 (2): 131-3, 2000. [PUBMED Abstract]
  23. Head DR: Proposed changes in the definitions of acute myeloid leukemia and myelodysplastic syndrome: are they helpful? Curr Opin Oncol 14 (1): 19-23, 2002. [PUBMED Abstract]
  24. Nösslinger T, Reisner R, Koller E, et al.: Myelodysplastic syndromes, from French-American-British to World Health Organization: comparison of classifications on 431 unselected patients from a single institution. Blood 98 (10): 2935-41, 2001. [PUBMED Abstract]
  25. Brunning RD, Porwit A, Orazi A, et al.: Myelodysplastic syndromes/neoplasms overview. In: Swerdlow SH, Campo E, Harris NL, et al., eds.: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: International Agency for Research on Cancer, 2008, pp 88-93.
  26. Occhipinti E, Correa H, Yu L, et al.: Comparison of two new classifications for pediatric myelodysplastic and myeloproliferative disorders. Pediatr Blood Cancer 44 (3): 240-4, 2005. [PUBMED Abstract]
  27. Aricò M, Biondi A, Pui CH: Juvenile myelomonocytic leukemia. Blood 90 (2): 479-88, 1997. [PUBMED Abstract]
  28. Passmore SJ, Hann IM, Stiller CA, et al.: Pediatric myelodysplasia: a study of 68 children and a new prognostic scoring system. Blood 85 (7): 1742-50, 1995. [PUBMED Abstract]
  29. Luna-Fineman S, Shannon KM, Atwater SK, et al.: Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood 93 (2): 459-66, 1999. [PUBMED Abstract]
  30. Hasle H, Baumann I, Bergsträsser E, et al.: The International Prognostic Scoring System (IPSS) for childhood myelodysplastic syndrome (MDS) and juvenile myelomonocytic leukemia (JMML). Leukemia 18 (12): 2008-14, 2004. [PUBMED Abstract]
  31. Kardos G, Baumann I, Passmore SJ, et al.: Refractory anemia in childhood: a retrospective analysis of 67 patients with particular reference to monosomy 7. Blood 102 (6): 1997-2003, 2003. [PUBMED Abstract]
  32. Passmore SJ, Chessells JM, Kempski H, et al.: Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival. Br J Haematol 121 (5): 758-67, 2003. [PUBMED Abstract]
  33. Greenberg P, Cox C, LeBeau MM, et al.: International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89 (6): 2079-88, 1997. [PUBMED Abstract]
  34. Baumann I, Niemeyer CM, Bennett JM, et al.: Childhood myelodysplastic syndrome. In: Swerdlow SH, Campo E, Harris NL, et al., eds.: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: International Agency for Research on Cancer, 2008, pp 104-7.
  35. Kuerbitz SJ, Civin CI, Krischer JP, et al.: Expression of myeloid-associated and lymphoid-associated cell-surface antigens in acute myeloid leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol 10 (9): 1419-29, 1992. [PUBMED Abstract]
  36. Smith FO, Lampkin BC, Versteeg C, et al.: Expression of lymphoid-associated cell surface antigens by childhood acute myeloid leukemia cells lacks prognostic significance. Blood 79 (9): 2415-22, 1992. [PUBMED Abstract]
  37. Dinndorf PA, Andrews RG, Benjamin D, et al.: Expression of normal myeloid-associated antigens by acute leukemia cells. Blood 67 (4): 1048-53, 1986. [PUBMED Abstract]
  38. Zhou Y, Jorgensen JL, Wang SA, et al.: Usefulness of CD11a and CD18 in flow cytometric immunophenotypic analysis for diagnosis of acute promyelocytic leukemia. Am J Clin Pathol 138 (5): 744-50, 2012. [PUBMED Abstract]
  39. Paietta E, Goloubeva O, Neuberg D, et al.: A surrogate marker profile for PML/RAR alpha expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic and molecular subtypes. Cytometry B Clin Cytom 59B (1): 1-9, 2004. [PUBMED Abstract]
  40. Lin P, Hao S, Medeiros LJ, et al.: Expression of CD2 in acute promyelocytic leukemia correlates with short form of PML-RARalpha transcripts and poorer prognosis. Am J Clin Pathol 121 (3): 402-7, 2004. [PUBMED Abstract]
  41. Creutzig U, Ritter J, Schellong G: Identification of two risk groups in childhood acute myelogenous leukemia after therapy intensification in study AML-BFM-83 as compared with study AML-BFM-78. AML-BFM Study Group. Blood 75 (10): 1932-40, 1990. [PUBMED Abstract]
  42. Bene MC, Castoldi G, Knapp W, et al.: Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 9 (10): 1783-6, 1995. [PUBMED Abstract]
  43. Vardiman JW, Thiele J, Arber DA, et al.: The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114 (5): 937-51, 2009. [PUBMED Abstract]
  44. Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al.: Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood 120 (16): 3187-205, 2012. [PUBMED Abstract]
  45. Tarlock K, Meshinchi S: Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants. Pediatr Clin North Am 62 (1): 75-93, 2015. [PUBMED Abstract]
  46. Gilliland DG, Griffin JD: The roles of FLT3 in hematopoiesis and leukemia. Blood 100 (5): 1532-42, 2002. [PUBMED Abstract]
  47. Balgobind BV, Hollink IH, Arentsen-Peters ST, et al.: Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica 96 (10): 1478-87, 2011. [PUBMED Abstract]
  48. Kühn MW, Radtke I, Bullinger L, et al.: High-resolution genomic profiling of adult and pediatric core-binding factor acute myeloid leukemia reveals new recurrent genomic alterations. Blood 119 (10): e67-75, 2012. [PUBMED Abstract]
  49. Bolouri H, Farrar JE, Triche T Jr, et al.: The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med 24 (1): 103-112, 2018. [PUBMED Abstract]
  50. Farrar JE, Schuback HL, Ries RE, et al.: Genomic Profiling of Pediatric Acute Myeloid Leukemia Reveals a Changing Mutational Landscape from Disease Diagnosis to Relapse. Cancer Res 76 (8): 2197-205, 2016. [PUBMED Abstract]
  51. Grimwade D, Walker H, Oliver F, et al.: The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 92 (7): 2322-33, 1998. [PUBMED Abstract]
  52. Gilliland DG: Targeted therapies in myeloid leukemias. Ann Hematol 83 (Suppl 1): S75-6, 2004. [PUBMED Abstract]
  53. Avivi I, Rowe JM: Prognostic factors in acute myeloid leukemia. Curr Opin Hematol 12 (1): 62-7, 2005. [PUBMED Abstract]
  54. Harrison CJ, Hills RK, Moorman AV, et al.: Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML 10 and 12. J Clin Oncol 28 (16): 2674-81, 2010. [PUBMED Abstract]
  55. von Neuhoff C, Reinhardt D, Sander A, et al.: Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol 28 (16): 2682-9, 2010. [PUBMED Abstract]
  56. Grimwade D, Hills RK, Moorman AV, et al.: Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116 (3): 354-65, 2010. [PUBMED Abstract]
  57. Brown P, McIntyre E, Rau R, et al.: The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood 110 (3): 979-85, 2007. [PUBMED Abstract]
  58. Hollink IH, Zwaan CM, Zimmermann M, et al.: Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia 23 (2): 262-70, 2009. [PUBMED Abstract]
  59. Ho PA, Alonzo TA, Gerbing RB, et al.: Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children's Oncology Group. Blood 113 (26): 6558-66, 2009. [PUBMED Abstract]
  60. Meshinchi S, Alonzo TA, Stirewalt DL, et al.: Clinical implications of FLT3 mutations in pediatric AML. Blood 108 (12): 3654-61, 2006. [PUBMED Abstract]
  61. Struski S, Lagarde S, Bories P, et al.: NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis. Leukemia 31 (3): 565-572, 2017. [PUBMED Abstract]
  62. Rubnitz JE, Raimondi SC, Halbert AR, et al.: Characteristics and outcome of t(8;21)-positive childhood acute myeloid leukemia: a single institution's experience. Leukemia 16 (10): 2072-7, 2002. [PUBMED Abstract]
  63. Tallman MS, Hakimian D, Shaw JM, et al.: Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol 11 (4): 690-7, 1993. [PUBMED Abstract]
  64. Mrózek K, Heerema NA, Bloomfield CD: Cytogenetics in acute leukemia. Blood Rev 18 (2): 115-36, 2004. [PUBMED Abstract]
  65. Creutzig U, Zimmermann M, Ritter J, et al.: Definition of a standard-risk group in children with AML. Br J Haematol 104 (3): 630-9, 1999. [PUBMED Abstract]
  66. Raimondi SC, Chang MN, Ravindranath Y, et al.: Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood 94 (11): 3707-16, 1999. [PUBMED Abstract]
  67. Lie SO, Abrahamsson J, Clausen N, et al.: Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down's syndrome: results of NOPHO-AML trials. Br J Haematol 122 (2): 217-25, 2003. [PUBMED Abstract]
  68. Klein K, Kaspers G, Harrison CJ, et al.: Clinical Impact of Additional Cytogenetic Aberrations, cKIT and RAS Mutations, and Treatment Elements in Pediatric t(8;21)-AML: Results From an International Retrospective Study by the International Berlin-Frankfurt-Münster Study Group. J Clin Oncol 33 (36): 4247-58, 2015. [PUBMED Abstract]
  69. Larson RA, Williams SF, Le Beau MM, et al.: Acute myelomonocytic leukemia with abnormal eosinophils and inv(16) or t(16;16) has a favorable prognosis. Blood 68 (6): 1242-9, 1986. [PUBMED Abstract]
  70. Duployez N, Marceau-Renaut A, Boissel N, et al.: Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood 127 (20): 2451-9, 2016. [PUBMED Abstract]
  71. Faber ZJ, Chen X, Gedman AL, et al.: The genomic landscape of core-binding factor acute myeloid leukemias. Nat Genet 48 (12): 1551-1556, 2016. [PUBMED Abstract]
  72. Noort S, Zimmermann M, Reinhardt D, et al.: Prognostic impact of t(16;21)(p11;q22) and t(16;21)(q24;q22) in pediatric AML: a retrospective study by the I-BFM Study Group. Blood 132 (15): 1584-1592, 2018. [PUBMED Abstract]
  73. Jahn N, Agrawal M, Bullinger L, et al.: Incidence and prognostic impact of ASXL2 mutations in adult acute myeloid leukemia patients with t(8;21)(q22;q22): a study of the German-Austrian AML Study Group. Leukemia 31 (4): 1012-1015, 2017. [PUBMED Abstract]
  74. Yamato G, Shiba N, Yoshida K, et al.: ASXL2 mutations are frequently found in pediatric AML patients with t(8;21)/ RUNX1-RUNX1T1 and associated with a better prognosis. Genes Chromosomes Cancer 56 (5): 382-393, 2017. [PUBMED Abstract]
  75. Smith MA, Ries LA, Gurney JG, et al.: Leukemia. In: Ries LA, Smith MA, Gurney JG, et al., eds.: Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995. Bethesda, Md: National Cancer Institute, SEER Program, 1999. NIH Pub.No. 99-4649, pp 17-34. Also available online. Last accessed January 31, 2019.
  76. Mistry AR, Pedersen EW, Solomon E, et al.: The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev 17 (2): 71-97, 2003. [PUBMED Abstract]
  77. Sanz MA, Grimwade D, Tallman MS, et al.: Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113 (9): 1875-91, 2009. [PUBMED Abstract]
  78. Grimwade D, Lo Coco F: Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia 16 (10): 1959-73, 2002. [PUBMED Abstract]
  79. Licht JD, Chomienne C, Goy A, et al.: Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 85 (4): 1083-94, 1995. [PUBMED Abstract]
  80. Yan W, Zhang G: Molecular Characteristics and Clinical Significance of 12 Fusion Genes in Acute Promyelocytic Leukemia: A Systematic Review. Acta Haematol 136 (1): 1-15, 2016. [PUBMED Abstract]
  81. Grimwade D, Biondi A, Mozziconacci MJ, et al.: Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Français de Cytogénétique Hématologique, Groupe de Français d'Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action "Molecular Cytogenetic Diagnosis in Haematological Malignancies". Blood 96 (4): 1297-308, 2000. [PUBMED Abstract]
  82. Falini B, Martelli MP, Bolli N, et al.: Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia. Blood 108 (6): 1999-2005, 2006. [PUBMED Abstract]
  83. Falini B, Mecucci C, Tiacci E, et al.: Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352 (3): 254-66, 2005. [PUBMED Abstract]
  84. Döhner K, Schlenk RF, Habdank M, et al.: Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 106 (12): 3740-6, 2005. [PUBMED Abstract]
  85. Verhaak RG, Goudswaard CS, van Putten W, et al.: Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106 (12): 3747-54, 2005. [PUBMED Abstract]
  86. Schnittger S, Schoch C, Kern W, et al.: Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 106 (12): 3733-9, 2005. [PUBMED Abstract]
  87. Schlenk RF, Döhner K, Krauter J, et al.: Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 358 (18): 1909-18, 2008. [PUBMED Abstract]
  88. Gale RE, Green C, Allen C, et al.: The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 111 (5): 2776-84, 2008. [PUBMED Abstract]
  89. Cazzaniga G, Dell'Oro MG, Mecucci C, et al.: Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood 106 (4): 1419-22, 2005. [PUBMED Abstract]
  90. Staffas A, Kanduri M, Hovland R, et al.: Presence of FLT3-ITD and high BAALC expression are independent prognostic markers in childhood acute myeloid leukemia. Blood 118 (22): 5905-13, 2011. [PUBMED Abstract]
  91. Tawana K, Wang J, Renneville A, et al.: Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 126 (10): 1214-23, 2015. [PUBMED Abstract]
  92. Marcucci G, Maharry K, Radmacher MD, et al.: Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol 26 (31): 5078-87, 2008. [PUBMED Abstract]
  93. Wouters BJ, Löwenberg B, Erpelinck-Verschueren CA, et al.: Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 113 (13): 3088-91, 2009. [PUBMED Abstract]
  94. Dufour A, Schneider F, Metzeler KH, et al.: Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol 28 (4): 570-7, 2010. [PUBMED Abstract]
  95. Taskesen E, Bullinger L, Corbacioglu A, et al.: Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood 117 (8): 2469-75, 2011. [PUBMED Abstract]
  96. Fasan A, Haferlach C, Alpermann T, et al.: The role of different genetic subtypes of CEBPA mutated AML. Leukemia 28 (4): 794-803, 2014. [PUBMED Abstract]
  97. Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, et al.: Characterization of CEBPA mutations and promoter hypermethylation in pediatric acute myeloid leukemia. Haematologica 96 (3): 384-92, 2011. [PUBMED Abstract]
  98. Groet J, McElwaine S, Spinelli M, et al.: Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet 361 (9369): 1617-20, 2003. [PUBMED Abstract]
  99. Hitzler JK, Cheung J, Li Y, et al.: GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood 101 (11): 4301-4, 2003. [PUBMED Abstract]
  100. Rainis L, Bercovich D, Strehl S, et al.: Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood 102 (3): 981-6, 2003. [PUBMED Abstract]
  101. Wechsler J, Greene M, McDevitt MA, et al.: Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 32 (1): 148-52, 2002. [PUBMED Abstract]
  102. de Rooij JD, Branstetter C, Ma J, et al.: Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat Genet 49 (3): 451-456, 2017. [PUBMED Abstract]
  103. Gurbuxani S, Vyas P, Crispino JD: Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood 103 (2): 399-406, 2004. [PUBMED Abstract]
  104. Ge Y, Stout ML, Tatman DA, et al.: GATA1, cytidine deaminase, and the high cure rate of Down syndrome children with acute megakaryocytic leukemia. J Natl Cancer Inst 97 (3): 226-31, 2005. [PUBMED Abstract]
  105. Johnston DL, Alonzo TA, Gerbing RB, et al.: Outcome of pediatric patients with acute myeloid leukemia (AML) and -5/5q- abnormalities from five pediatric AML treatment protocols: a report from the Children's Oncology Group. Pediatr Blood Cancer 60 (12): 2073-8, 2013. [PUBMED Abstract]
  106. Stevens RF, Hann IM, Wheatley K, et al.: Marked improvements in outcome with chemotherapy alone in paediatric acute myeloid leukemia: results of the United Kingdom Medical Research Council's 10th AML trial. MRC Childhood Leukaemia Working Party. Br J Haematol 101 (1): 130-40, 1998. [PUBMED Abstract]
  107. Wells RJ, Arthur DC, Srivastava A, et al.: Prognostic variables in newly diagnosed children and adolescents with acute myeloid leukemia: Children's Cancer Group Study 213. Leukemia 16 (4): 601-7, 2002. [PUBMED Abstract]
  108. Hasle H, Alonzo TA, Auvrignon A, et al.: Monosomy 7 and deletion 7q in children and adolescents with acute myeloid leukemia: an international retrospective study. Blood 109 (11): 4641-7, 2007. [PUBMED Abstract]
  109. Rasche M, von Neuhoff C, Dworzak M, et al.: Genotype-outcome correlations in pediatric AML: the impact of a monosomal karyotype in trial AML-BFM 2004. Leukemia 31 (12): 2807-2814, 2017. [PUBMED Abstract]
  110. Swansbury GJ, Lawler SD, Alimena G, et al.: Long-term survival in acute myelogenous leukemia: a second follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer Genet Cytogenet 73 (1): 1-7, 1994. [PUBMED Abstract]
  111. Blink M, Zimmermann M, von Neuhoff C, et al.: Normal karyotype is a poor prognostic factor in myeloid leukemia of Down syndrome: a retrospective, international study. Haematologica 99 (2): 299-307, 2014. [PUBMED Abstract]
  112. Gröschel S, Sanders MA, Hoogenboezem R, et al.: A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157 (2): 369-81, 2014. [PUBMED Abstract]
  113. Yamazaki H, Suzuki M, Otsuki A, et al.: A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell 25 (4): 415-27, 2014. [PUBMED Abstract]
  114. Lugthart S, Gröschel S, Beverloo HB, et al.: Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J Clin Oncol 28 (24): 3890-8, 2010. [PUBMED Abstract]
  115. Balgobind BV, Lugthart S, Hollink IH, et al.: EVI1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia 24 (5): 942-9, 2010. [PUBMED Abstract]
  116. Schnittger S, Schoch C, Dugas M, et al.: Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100 (1): 59-66, 2002. [PUBMED Abstract]
  117. Thiede C, Steudel C, Mohr B, et al.: Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99 (12): 4326-35, 2002. [PUBMED Abstract]
  118. Whitman SP, Archer KJ, Feng L, et al.: Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 61 (19): 7233-9, 2001. [PUBMED Abstract]
  119. Iwai T, Yokota S, Nakao M, et al.: Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children's Cancer and Leukemia Study Group, Japan. Leukemia 13 (1): 38-43, 1999. [PUBMED Abstract]
  120. Arrigoni P, Beretta C, Silvestri D, et al.: FLT3 internal tandem duplication in childhood acute myeloid leukaemia: association with hyperleucocytosis in acute promyelocytic leukaemia. Br J Haematol 120 (1): 89-92, 2003. [PUBMED Abstract]
  121. Meshinchi S, Stirewalt DL, Alonzo TA, et al.: Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood 102 (4): 1474-9, 2003. [PUBMED Abstract]
  122. Zwaan CM, Meshinchi S, Radich JP, et al.: FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood 102 (7): 2387-94, 2003. [PUBMED Abstract]
  123. Chang P, Kang M, Xiao A, et al.: FLT3 mutation incidence and timing of origin in a population case series of pediatric leukemia. BMC Cancer 10: 513, 2010. [PUBMED Abstract]
  124. Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, et al.: NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood 118 (13): 3645-56, 2011. [PUBMED Abstract]
  125. Ostronoff F, Othus M, Gerbing RB, et al.: NUP98/NSD1 and FLT3/ITD coexpression is more prevalent in younger AML patients and leads to induction failure: a COG and SWOG report. Blood 124 (15): 2400-7, 2014. [PUBMED Abstract]
  126. Shih LY, Kuo MC, Liang DC, et al.: Internal tandem duplication and Asp835 mutations of the FMS-like tyrosine kinase 3 (FLT3) gene in acute promyelocytic leukemia. Cancer 98 (6): 1206-16, 2003. [PUBMED Abstract]
  127. Noguera NI, Breccia M, Divona M, et al.: Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia 16 (11): 2185-9, 2002. [PUBMED Abstract]
  128. Gale RE, Hills R, Pizzey AR, et al.: Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood 106 (12): 3768-76, 2005. [PUBMED Abstract]
  129. Abu-Duhier FM, Goodeve AC, Wilson GA, et al.: Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol 113 (4): 983-8, 2001. [PUBMED Abstract]
  130. Kutny MA, Moser BK, Laumann K, et al.: FLT3 mutation status is a predictor of early death in pediatric acute promyelocytic leukemia: a report from the Children's Oncology Group. Pediatr Blood Cancer 59 (4): 662-7, 2012. [PUBMED Abstract]
  131. Tallman MS, Kim HT, Montesinos P, et al.: Does microgranular variant morphology of acute promyelocytic leukemia independently predict a less favorable outcome compared with classical M3 APL? A joint study of the North American Intergroup and the PETHEMA Group. Blood 116 (25): 5650-9, 2010. [PUBMED Abstract]
  132. Sung L, Aplenc R, Alonzo TA, et al.: Predictors and short-term outcomes of hyperleukocytosis in children with acute myeloid leukemia: a report from the Children's Oncology Group. Haematologica 97 (11): 1770-3, 2012. [PUBMED Abstract]
  133. Callens C, Chevret S, Cayuela JM, et al.: Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): a retrospective study from the European APL Group. Leukemia 19 (7): 1153-60, 2005. [PUBMED Abstract]
  134. Schnittger S, Bacher U, Haferlach C, et al.: Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA. Haematologica 96 (12): 1799-807, 2011. [PUBMED Abstract]
  135. Breccia M, Loglisci G, Loglisci MG, et al.: FLT3-ITD confers poor prognosis in patients with acute promyelocytic leukemia treated with AIDA protocols: long-term follow-up analysis. Haematologica 98 (12): e161-3, 2013. [PUBMED Abstract]
  136. Poiré X, Moser BK, Gallagher RE, et al.: Arsenic trioxide in front-line therapy of acute promyelocytic leukemia (C9710): prognostic significance of FLT3 mutations and complex karyotype. Leuk Lymphoma 55 (7): 1523-32, 2014. [PUBMED Abstract]
  137. Pui CH, Relling MV, Rivera GK, et al.: Epipodophyllotoxin-related acute myeloid leukemia: a study of 35 cases. Leukemia 9 (12): 1990-6, 1995. [PUBMED Abstract]
  138. Inaba H, Zhou Y, Abla O, et al.: Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: a retrospective international study. Blood 126 (13): 1575-84, 2015. [PUBMED Abstract]
  139. Balgobind BV, Raimondi SC, Harbott J, et al.: Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 114 (12): 2489-96, 2009. [PUBMED Abstract]
  140. Swansbury GJ, Slater R, Bain BJ, et al.: Hematological malignancies with t(9;11)(p21-22;q23)--a laboratory and clinical study of 125 cases. European 11q23 Workshop participants. Leukemia 12 (5): 792-800, 1998. [PUBMED Abstract]
  141. Rubnitz JE, Raimondi SC, Tong X, et al.: Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol 20 (9): 2302-9, 2002. [PUBMED Abstract]
  142. Mrózek K, Heinonen K, Lawrence D, et al.: Adult patients with de novo acute myeloid leukemia and t(9; 11)(p22; q23) have a superior outcome to patients with other translocations involving band 11q23: a Cancer and Leukemia Group B study. Blood 90 (11): 4532-8, 1997. [PUBMED Abstract]
  143. Martinez-Climent JA, Espinosa R 3rd, Thirman MJ, et al.: Abnormalities of chromosome band 11q23 and the MLL gene in pediatric myelomonocytic and monoblastic leukemias. Identification of the t(9;11) as an indicator of long survival. J Pediatr Hematol Oncol 17 (4): 277-83, 1995. [PUBMED Abstract]
  144. Casillas JN, Woods WG, Hunger SP, et al.: Prognostic implications of t(10;11) translocations in childhood acute myelogenous leukemia: a report from the Children's Cancer Group. J Pediatr Hematol Oncol 25 (8): 594-600, 2003. [PUBMED Abstract]
  145. Morerio C, Rosanda C, Rapella A, et al.: Is t(10;11)(p11.2;q23) involving MLL and ABI-1 genes associated with congenital acute monocytic leukemia? Cancer Genet Cytogenet 139 (1): 57-9, 2002. [PUBMED Abstract]
  146. Taki T, Shibuya N, Taniwaki M, et al.: ABI-1, a human homolog to mouse Abl-interactor 1, fuses the MLL gene in acute myeloid leukemia with t(10;11)(p11.2;q23). Blood 92 (4): 1125-30, 1998. [PUBMED Abstract]
  147. Coenen EA, Raimondi SC, Harbott J, et al.: Prognostic significance of additional cytogenetic aberrations in 733 de novo pediatric 11q23/MLL-rearranged AML patients: results of an international study. Blood 117 (26): 7102-11, 2011. [PUBMED Abstract]
  148. Ageberg M, Drott K, Olofsson T, et al.: Identification of a novel and myeloid specific role of the leukemia-associated fusion protein DEK-NUP214 leading to increased protein synthesis. Genes Chromosomes Cancer 47 (4): 276-87, 2008. [PUBMED Abstract]
  149. Shiba N, Ichikawa H, Taki T, et al.: NUP98-NSD1 gene fusion and its related gene expression signature are strongly associated with a poor prognosis in pediatric acute myeloid leukemia. Genes Chromosomes Cancer 52 (7): 683-93, 2013. [PUBMED Abstract]
  150. Slovak ML, Gundacker H, Bloomfield CD, et al.: A retrospective study of 69 patients with t(6;9)(p23;q34) AML emphasizes the need for a prospective, multicenter initiative for rare 'poor prognosis' myeloid malignancies. Leukemia 20 (7): 1295-7, 2006. [PUBMED Abstract]
  151. Alsabeh R, Brynes RK, Slovak ML, et al.: Acute myeloid leukemia with t(6;9) (p23;q34): association with myelodysplasia, basophilia, and initial CD34 negative immunophenotype. Am J Clin Pathol 107 (4): 430-7, 1997. [PUBMED Abstract]
  152. Sandahl JD, Coenen EA, Forestier E, et al.: t(6;9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica 99 (5): 865-72, 2014. [PUBMED Abstract]
  153. Tarlock K, Alonzo TA, Moraleda PP, et al.: Acute myeloid leukaemia (AML) with t(6;9)(p23;q34) is associated with poor outcome in childhood AML regardless of FLT3-ITD status: a report from the Children's Oncology Group. Br J Haematol 166 (2): 254-9, 2014. [PUBMED Abstract]
  154. Gruber TA, Larson Gedman A, Zhang J, et al.: An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 22 (5): 683-97, 2012. [PUBMED Abstract]
  155. Thiollier C, Lopez CK, Gerby B, et al.: Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models. J Exp Med 209 (11): 2017-31, 2012. [PUBMED Abstract]
  156. de Rooij JD, Hollink IH, Arentsen-Peters ST, et al.: NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern. Leukemia 27 (12): 2280-8, 2013. [PUBMED Abstract]
  157. Masetti R, Pigazzi M, Togni M, et al.: CBFA2T3-GLIS2 fusion transcript is a novel common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7 subtype. Blood 121 (17): 3469-72, 2013. [PUBMED Abstract]
  158. Masetti R, Rondelli R, Fagioli F, et al.: Infants with acute myeloid leukemia treated according to the Associazione Italiana di Ematologia e Oncologia Pediatrica 2002/01 protocol have an outcome comparable to that of older children. Haematologica 99 (8): e127-9, 2014. [PUBMED Abstract]
  159. de Rooij JD, Masetti R, van den Heuvel-Eibrink MM, et al.: Recurrent abnormalities can be used for risk group stratification in pediatric AMKL: a retrospective intergroup study. Blood 127 (26): 3424-30, 2016. [PUBMED Abstract]
  160. Hara Y, Shiba N, Ohki K, et al.: Prognostic impact of specific molecular profiles in pediatric acute megakaryoblastic leukemia in non-Down syndrome. Genes Chromosomes Cancer 56 (5): 394-404, 2017. [PUBMED Abstract]
  161. Carroll A, Civin C, Schneider N, et al.: The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group Study. Blood 78 (3): 748-52, 1991. [PUBMED Abstract]
  162. Lion T, Haas OA: Acute megakaryocytic leukemia with the t(1;22)(p13;q13). Leuk Lymphoma 11 (1-2): 15-20, 1993. [PUBMED Abstract]
  163. Duchayne E, Fenneteau O, Pages MP, et al.: Acute megakaryoblastic leukaemia: a national clinical and biological study of 53 adult and childhood cases by the Groupe Français d'Hématologie Cellulaire (GFHC). Leuk Lymphoma 44 (1): 49-58, 2003. [PUBMED Abstract]
  164. Ma Z, Morris SW, Valentine V, et al.: Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet 28 (3): 220-1, 2001. [PUBMED Abstract]
  165. Mercher T, Coniat MB, Monni R, et al.: Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proc Natl Acad Sci U S A 98 (10): 5776-9, 2001. [PUBMED Abstract]
  166. Bernstein J, Dastugue N, Haas OA, et al.: Nineteen cases of the t(1;22)(p13;q13) acute megakaryblastic leukaemia of infants/children and a review of 39 cases: report from a t(1;22) study group. Leukemia 14 (1): 216-8, 2000. [PUBMED Abstract]
  167. Coenen EA, Zwaan CM, Reinhardt D, et al.: Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: a collaborative study by the International-Berlin-Frankfurt-Munster AML-study group. Blood 122 (15): 2704-13, 2013. [PUBMED Abstract]
  168. Wong KF, Yuen HL, Siu LL, et al.: t(8;16)(p11;p13) predisposes to a transient but potentially recurring neonatal leukemia. Hum Pathol 39 (11): 1702-7, 2008. [PUBMED Abstract]
  169. Wu X, Sulavik D, Roulston D, et al.: Spontaneous remission of congenital acute myeloid leukemia with t(8;16)(p11;13). Pediatr Blood Cancer 56 (2): 331-2, 2011. [PUBMED Abstract]
  170. Terui K, Sato T, Sasaki S, et al.: Two novel variants of MOZ-CBP fusion transcripts in spontaneously remitted infant leukemia with t(1;16;8)(p13;p13;p11), a new variant of t(8;16)(p11;p13). Haematologica 93 (10): 1591-3, 2008. [PUBMED Abstract]
  171. Sainati L, Bolcato S, Cocito MG, et al.: Transient acute monoblastic leukemia with reciprocal (8;16)(p11;p13) translocation. Pediatr Hematol Oncol 13 (2): 151-7, 1996 Mar-Apr. [PUBMED Abstract]
  172. Weintraub M, Kaplinsky C, Amariglio N, et al.: Spontaneous regression of congenital leukaemia with an 8;16 translocation. Br J Haematol 111 (2): 641-3, 2000. [PUBMED Abstract]
  173. Classen CF, Behnisch W, Reinhardt D, et al.: Spontaneous complete and sustained remission of a rearrangement CBP (16p13)-positive disseminated congenital myelosarcoma. Ann Hematol 84 (4): 274-5, 2005. [PUBMED Abstract]
  174. Beverloo HB, Panagopoulos I, Isaksson M, et al.: Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13). Cancer Res 61 (14): 5374-7, 2001. [PUBMED Abstract]
  175. Slater RM, von Drunen E, Kroes WG, et al.: t(7;12)(q36;p13) and t(7;12)(q32;p13)--translocations involving ETV6 in children 18 months of age or younger with myeloid disorders. Leukemia 15 (6): 915-20, 2001. [PUBMED Abstract]
  176. von Bergh AR, van Drunen E, van Wering ER, et al.: High incidence of t(7;12)(q36;p13) in infant AML but not in infant ALL, with a dismal outcome and ectopic expression of HLXB9. Genes Chromosomes Cancer 45 (8): 731-9, 2006. [PUBMED Abstract]
  177. Tosi S, Harbott J, Teigler-Schlegel A, et al.: t(7;12)(q36;p13), a new recurrent translocation involving ETV6 in infant leukemia. Genes Chromosomes Cancer 29 (4): 325-32, 2000. [PUBMED Abstract]
  178. Park J, Kim M, Lim J, et al.: Three-way complex translocations in infant acute myeloid leukemia with t(7;12)(q36;p13): the incidence and correlation of a HLXB9 overexpression. Cancer Genet Cytogenet 191 (2): 102-5, 2009. [PUBMED Abstract]
  179. Takeda A, Yaseen NR: Nucleoporins and nucleocytoplasmic transport in hematologic malignancies. Semin Cancer Biol 27: 3-10, 2014. [PUBMED Abstract]
  180. Brown J, Jawad M, Twigg SR, et al.: A cryptic t(5;11)(q35;p15.5) in 2 children with acute myeloid leukemia with apparently normal karyotypes, identified by a multiplex fluorescence in situ hybridization telomere assay. Blood 99 (7): 2526-31, 2002. [PUBMED Abstract]
  181. Panarello C, Rosanda C, Morerio C: Cryptic translocation t(5;11)(q35;p15.5) with involvement of the NSD1 and NUP98 genes without 5q deletion in childhood acute myeloid leukemia. Genes Chromosomes Cancer 35 (3): 277-81, 2002. [PUBMED Abstract]
  182. Cerveira N, Correia C, Dória S, et al.: Frequency of NUP98-NSD1 fusion transcript in childhood acute myeloid leukaemia. Leukemia 17 (11): 2244-7, 2003. [PUBMED Abstract]
  183. Jaju RJ, Fidler C, Haas OA, et al.: A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood 98 (4): 1264-7, 2001. [PUBMED Abstract]
  184. Radich JP, Kopecky KJ, Willman CL, et al.: N-ras mutations in adult de novo acute myelogenous leukemia: prevalence and clinical significance. Blood 76 (4): 801-7, 1990. [PUBMED Abstract]
  185. Farr C, Gill R, Katz F, et al.: Analysis of ras gene mutations in childhood myeloid leukaemia. Br J Haematol 77 (3): 323-7, 1991. [PUBMED Abstract]
  186. Berman JN, Gerbing RB, Alonzo TA, et al.: Prevalence and clinical implications of NRAS mutations in childhood AML: a report from the Children's Oncology Group. Leukemia 25 (6): 1039-42, 2011. [PUBMED Abstract]
  187. Schnittger S, Kohl TM, Haferlach T, et al.: KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 107 (5): 1791-9, 2006. [PUBMED Abstract]
  188. Tokumasu M, Murata C, Shimada A, et al.: Adverse prognostic impact of KIT mutations in childhood CBF-AML: the results of the Japanese Pediatric Leukemia/Lymphoma Study Group AML-05 trial. Leukemia 29 (12): 2438-41, 2015. [PUBMED Abstract]
  189. Cairoli R, Beghini A, Grillo G, et al.: Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 107 (9): 3463-8, 2006. [PUBMED Abstract]
  190. Paschka P, Marcucci G, Ruppert AS, et al.: Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 24 (24): 3904-11, 2006. [PUBMED Abstract]
  191. Shimada A, Taki T, Tabuchi K, et al.: KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood 107 (5): 1806-9, 2006. [PUBMED Abstract]
  192. Shih LY, Liang DC, Huang CF, et al.: Cooperating mutations of receptor tyrosine kinases and Ras genes in childhood core-binding factor acute myeloid leukemia and a comparative analysis on paired diagnosis and relapse samples. Leukemia 22 (2): 303-7, 2008. [PUBMED Abstract]
  193. Goemans BF, Zwaan CM, Miller M, et al.: Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 19 (9): 1536-42, 2005. [PUBMED Abstract]
  194. Boissel N, Leroy H, Brethon B, et al.: Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 20 (6): 965-70, 2006. [PUBMED Abstract]
  195. Pollard JA, Alonzo TA, Gerbing RB, et al.: Prevalence and prognostic significance of KIT mutations in pediatric patients with core binding factor AML enrolled on serial pediatric cooperative trials for de novo AML. Blood 115 (12): 2372-9, 2010. [PUBMED Abstract]
  196. Paschka P, Marcucci G, Ruppert AS, et al.: Wilms' tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 26 (28): 4595-602, 2008. [PUBMED Abstract]
  197. Virappane P, Gale R, Hills R, et al.: Mutation of the Wilms' tumor 1 gene is a poor prognostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia: the United Kingdom Medical Research Council Adult Leukaemia Working Party. J Clin Oncol 26 (33): 5429-35, 2008. [PUBMED Abstract]
  198. Gaidzik VI, Schlenk RF, Moschny S, et al.: Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia: a study of the German-Austrian AML Study Group. Blood 113 (19): 4505-11, 2009. [PUBMED Abstract]
  199. Renneville A, Boissel N, Zurawski V, et al.: Wilms tumor 1 gene mutations are associated with a higher risk of recurrence in young adults with acute myeloid leukemia: a study from the Acute Leukemia French Association. Cancer 115 (16): 3719-27, 2009. [PUBMED Abstract]
  200. Ho PA, Zeng R, Alonzo TA, et al.: Prevalence and prognostic implications of WT1 mutations in pediatric acute myeloid leukemia (AML): a report from the Children's Oncology Group. Blood 116 (5): 702-10, 2010. [PUBMED Abstract]
  201. Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M, et al.: Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood 113 (23): 5951-60, 2009. [PUBMED Abstract]
  202. Ley TJ, Ding L, Walter MJ, et al.: DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363 (25): 2424-33, 2010. [PUBMED Abstract]
  203. Yan XJ, Xu J, Gu ZH, et al.: Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43 (4): 309-15, 2011. [PUBMED Abstract]
  204. Thol F, Damm F, Lüdeking A, et al.: Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 29 (21): 2889-96, 2011. [PUBMED Abstract]
  205. Ho PA, Kutny MA, Alonzo TA, et al.: Leukemic mutations in the methylation-associated genes DNMT3A and IDH2 are rare events in pediatric AML: a report from the Children's Oncology Group. Pediatr Blood Cancer 57 (2): 204-9, 2011. [PUBMED Abstract]
  206. Green CL, Evans CM, Hills RK, et al.: The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status. Blood 116 (15): 2779-82, 2010. [PUBMED Abstract]
  207. Paschka P, Schlenk RF, Gaidzik VI, et al.: IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 28 (22): 3636-43, 2010. [PUBMED Abstract]
  208. Abbas S, Lugthart S, Kavelaars FG, et al.: Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 116 (12): 2122-6, 2010. [PUBMED Abstract]
  209. Marcucci G, Maharry K, Wu YZ, et al.: IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 28 (14): 2348-55, 2010. [PUBMED Abstract]
  210. Wagner K, Damm F, Göhring G, et al.: Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol 28 (14): 2356-64, 2010. [PUBMED Abstract]
  211. Figueroa ME, Abdel-Wahab O, Lu C, et al.: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18 (6): 553-67, 2010. [PUBMED Abstract]
  212. Ward PS, Patel J, Wise DR, et al.: The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17 (3): 225-34, 2010. [PUBMED Abstract]
  213. Dang L, White DW, Gross S, et al.: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462 (7274): 739-44, 2009. [PUBMED Abstract]
  214. Damm F, Thol F, Hollink I, et al.: Prevalence and prognostic value of IDH1 and IDH2 mutations in childhood AML: a study of the AML-BFM and DCOG study groups. Leukemia 25 (11): 1704-10, 2011. [PUBMED Abstract]
  215. Oki K, Takita J, Hiwatari M, et al.: IDH1 and IDH2 mutations are rare in pediatric myeloid malignancies. Leukemia 25 (2): 382-4, 2011. [PUBMED Abstract]
  216. Pigazzi M, Ferrari G, Masetti R, et al.: Low prevalence of IDH1 gene mutation in childhood AML in Italy. Leukemia 25 (1): 173-4, 2011. [PUBMED Abstract]
  217. Ho PA, Alonzo TA, Kopecky KJ, et al.: Molecular alterations of the IDH1 gene in AML: a Children's Oncology Group and Southwest Oncology Group study. Leukemia 24 (5): 909-13, 2010. [PUBMED Abstract]
  218. Andersson AK, Miller DW, Lynch JA, et al.: IDH1 and IDH2 mutations in pediatric acute leukemia. Leukemia 25 (10): 1570-7, 2011. [PUBMED Abstract]
  219. Maxson JE, Ries RE, Wang YC, et al.: CSF3R mutations have a high degree of overlap with CEBPA mutations in pediatric AML. Blood 127 (24): 3094-8, 2016. [PUBMED Abstract]
  220. Germeshausen M, Kratz CP, Ballmaier M, et al.: RAS and CSF3R mutations in severe congenital neutropenia. Blood 114 (16): 3504-5, 2009. [PUBMED Abstract]
  221. Skokowa J, Steinemann D, Katsman-Kuipers JE, et al.: Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis. Blood 123 (14): 2229-37, 2014. [PUBMED Abstract]

No hay comentarios:

Publicar un comentario