viernes, 4 de octubre de 2019

Características genómicas de los cánceres infantiles (PDQ®) 6/8 –Versión para profesionales de salud - Instituto Nacional del Cáncer

Características genómicas de los cánceres infantiles (PDQ®)–Versión para profesionales de salud - Instituto Nacional del Cáncer

Instituto Nacional Del Cáncer

Características genómicas de los cánceres infantiles (PDQ®)–Versión para profesionales de salud

Histiocitosis de células de Langerhans

En estudios publicados en 1994 se observó la clonalidad en la histiocitosis de células de Langerhans (HCL) mediante polimorfismos de sitios enzimáticos de restricción específica de la metilación en las regiones del cromosoma X que codifican el receptor de andrógeno humano, DXS255, PGK y HPRT.[1,2] En los resultados de las biopsias de las lesiones de pacientes con enfermedad monosistémica o multisistémica se observó proliferación de células de HCL de un solo clon. El descubrimiento de anomalías genómicas recurrentes (principalmente BRAF V600E) en la HCL (ver más adelante) confirmó la clonalidad de la HCL en niños.
En un comienzo, se notificó que la HCL pulmonar en adultos no presentaba clonalidad en alrededor de 75 % de los casos,[3] mientras que en un análisis de mutaciones en BRAF se observó que 25 a 50 % de los pacientes adultos de HCL pulmonar exhibían mutaciones BRAF V600E.[3,4] En otro estudio de 26 casos de HCL pulmonar, se encontró que 50 % tenían mutaciones BRAF V600E y 40 % tenían mutaciones en NRAS.[5] Un número casi idéntico de mutaciones son policlonales, en vez de monoclonales. Aún no se ha investigado si hay concordancia entre la clonalidad y las mutaciones en la vía BRAF en los mismos pacientes, lo cual podría indicar un trastorno reactivo en lugar de una neoplasia en la HCL con pulmón de fumador y una neoplasia clonal en otros tipos de HCL.
AMPLIARVía de BRAF-RAS.
Figura 8. Cortesía de Rikhia Chakraborty, Ph.D. El permiso para reutilizar la figura se debe solicitar directamente a la Dra. Chakraborty.
El fundamento genómico de la HCL evolucionó gracias a un informe de 2010 sobre una mutación activadora del oncogén BRAF (V600E) que se detectó en 35 de 61 casos (57 %).[6] En múltiples informes posteriores se confirmó la presencia de mutaciones BRAF V600E en 50 % o más casos de HCL en niños.[7-9] Se han descrito otras mutaciones en BRAF que activan la señalización.[8,10] Las mutaciones en ARAF son poco frecuentes en la HCL, pero cuando están presentes, también pueden producir la activación de la vía RAS-MAPK.[11]
La vía de señalización RAS-MAPK (consultar la Figura 8) transmite señales de un receptor de superficie celular (por ejemplo, un factor de crecimiento) por la vía RAS (mediante una de las proteínas RAF [A, B o C]) para fosforilar a MEK y luego, a la cinasa regulada por señales extracelulares (ERK), lo que produce señales nucleares que afectan la regulación del ciclo celular y la transcripción. La mutación V600E en BRAF produce fosforilación continua y, por lo tanto, activación de MEK y ERK sin necesidad de una señal externa. La activación de ERK ocurre por fosforilación, y se puede detectar ERK fosforilada en casi todas las lesiones de HCL.[6,12]
Debido a que es posible detectar la activación de la vía RAS-MAPK en todos los casos de HCL, pero no todos los casos tienen mutaciones en BRAF, se sospecha que hay anomalías genómicas en otros componentes de la vía. Se identificaron las alteraciones genómicas siguientes:
  • En las piezas de tejido biópsico de HCL, la secuenciación del exoma completo de BRAF mutado versus BRAF de tipo natural reveló que 7 de 21 muestras de BRAF de tipo natural tenían mutaciones en MAP2K1; aunque ninguna de las muestras con BRAF mutado tenía mutaciones en MAP2K1.[12] Las mutaciones en MAP2K1 (que codifica la MEK) eran activadoras, según lo indicó la inducción de la fosforilación de ERK.[12]
  • En otro estudio se observaron mutaciones en MAP2K1 de forma exclusiva en 11 de 22 casos con BRAF de tipo natural.[13]
  • Por último, las deleciones en el marco de lectura de BRAF y las fusiones FAM73A-BRAF en el marco de lectura se produjeron en un grupo de casos sin mutaciones BRAF V600E y sin mutaciones en MAP2K1.[14]
Los estudios corroboran la activación universal de ERK en la HCL, y en la mayoría de los casos las anomalías en BRAF y MAP2K1 explican esta activación.[6,12,14] En conjunto, estas mutaciones en la vía de la cinasa MAP representan casi 90 % de las causas de la activación universal de ERK en la HCL.[6,12,14]
En una serie de 100 pacientes, se estudió la presencia de la mutación BRAF V600E en la sangre y la médula ósea mediante la técnica de reacción en cadena de la polimerasa cuantitativa sensible: 65 % tuvieron un resultado positivo para la mutación BRAF V600E.[7] Se pudieron identificar células circulantes con la mutación BRAF V600E en todos los pacientes de riesgo alto y en un subgrupo de pacientes con enfermedad multisistémica de riesgo bajo. La presencia de células circulantes con la mutación confiere el doble de riesgo de recidiva. En un estudio similar de 48 pacientes de HCL con la mutación BRAF V600E, se detectó el alelo BRAF V600E en el ADN libre circulante en 100 % de los pacientes de HCL multisistémica con compromiso de órganos de riesgo, en 42 % de los pacientes de HCL sin compromiso de órganos de riesgo y en 14 % de los pacientes con enfermedad monosistémica.[15]
Se confirmó que la HCL tiene origen en células dendríticas mieloides por el hallazgo de células madre que expresan CD34 y la mutación en la médula ósea de pacientes de riesgo alto. En aquellos con enfermedad de riesgo bajo, se encontró la mutación en las células dendríticas mieloides más maduras, lo que sugiere que el estadio del desarrollo celular es crítico para definir el grado de enfermedad de la HCL. En la actualidad, la HCL se considera una neoplasia mieloide.

Consecuencias clínicas

Las consecuencias clínicas de los hallazgos genómicos descritos son las siguientes:
  • La HCL se incorpora a un grupo de otras entidades pediátricas con mutaciones activadoras en BRAF, que incluyen afecciones benignas seleccionadas (por ejemplo, nevo benigno) [16] y neoplasias malignas de grado bajo (por ejemplo, astrocitoma pilocítico).[17,18] Por lo general, todas estas afecciones tienen una evolución poco activa y se presenta resolución espontánea en algunos casos. El curso clínico distintivo puede ser una manifestación de un envejecimiento inducido por oncogenes.[16,19]
  • Las mutaciones BRAF V600E pueden ser el blanco de acción de los inhibidores de BRAF (por ejemplo, vemurafenib y dabrafenib) o de la combinación de inhibidores de BRAF con inhibidores de MEK (por ejemplo, dabrafenib/trametinib y vemurafenib/cobimetinib). Estos fármacos y sus combinaciones están aprobados para adultos con melanoma. En adultos, el tratamiento del melanoma con combinaciones de un inhibidor de BRAF y un inhibidor de MEK produjo mejora significativa del desenlace de supervivencia sin progresión, en comparación con el tratamiento con un inhibidor de BRAF solo.[20,21]
    En los informes de casos se ha descrito la actividad de los inhibidores de BRAF contra la HCL en adultos [22-26] y niños,[27] pero no hay suficientes datos para evaluar la función de estos fármacos en el tratamiento de la HCL infantil.
    El efecto secundario más grave de la terapia con inhibidores de BRAF es la inducción de carcinomas de células escamosas cutáneos,[20,21] y, con el aumento de la edad, la incidencia de estos segundos cánceres;[28] es posible disminuir este efecto mediante el tratamiento simultáneo con inhibidores de BRAF y MEK.[20,21] En un estudio a largo plazo en pacientes adultos con la enfermedad de Erdheim-Chester y HCL que recibieron vemurafenib, 85 % de los pacientes presentaron artralgias, 62 % de los pacientes presentaron exantema maculopapuloso y más de 40 % de los pacientes tuvieron otros problemas cutáneos, incluso hiperqueratosis, queratosis seborreica y prurito.[29]
  • Se encontraron células circulantes con la mutación BRAF V600E en 59 % de los pacientes que presentaron la enfermedad neurodegenerativa HCL, en comparación con 15 % de los pacientes que no presentaron esta enfermedad. Las células circulantes mutadas detectables tuvieron una sensibilidad de 0,59 y una especificidad de 0,86 para la presentación de la HCL neurodegenerativa. Algunos pacientes con esta enfermedad tenían células circulantes con la mutación BRAF V600E, incluso después del tratamiento.[30]
  • Con más estudios de investigación, la observación de BRAF V600E (o una posible mutación en MAP2K1) en células circulantes o ADN libre circulante se podría convertir en una herramienta diagnóstica útil para diferenciar la enfermedad de riesgo alto de la de riesgo bajo.[7] Además, en pacientes que tienen una mutación somática, es posible que la persistencia de las células circulantes con la mutación sea útil como marcador de enfermedad residual.[7]
(Para obtener más información sobre el tratamiento de la HCL, consultar el sumario del PDQ Tratamiento de la histiocitosis de células de Langerhans).
Bibliografía
  1. Willman CL, Busque L, Griffith BB, et al.: Langerhans'-cell histiocytosis (histiocytosis X)--a clonal proliferative disease. N Engl J Med 331 (3): 154-60, 1994. [PUBMED Abstract]
  2. Yu RC, Chu C, Buluwela L, et al.: Clonal proliferation of Langerhans cells in Langerhans cell histiocytosis. Lancet 343 (8900): 767-8, 1994. [PUBMED Abstract]
  3. Dacic S, Trusky C, Bakker A, et al.: Genotypic analysis of pulmonary Langerhans cell histiocytosis. Hum Pathol 34 (12): 1345-9, 2003. [PUBMED Abstract]
  4. Roden AC, Hu X, Kip S, et al.: BRAF V600E expression in Langerhans cell histiocytosis: clinical and immunohistochemical study on 25 pulmonary and 54 extrapulmonary cases. Am J Surg Pathol 38 (4): 548-51, 2014. [PUBMED Abstract]
  5. Mourah S, How-Kit A, Meignin V, et al.: Recurrent NRAS mutations in pulmonary Langerhans cell histiocytosis. Eur Respir J 47 (6): 1785-96, 2016. [PUBMED Abstract]
  6. Badalian-Very G, Vergilio JA, Degar BA, et al.: Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116 (11): 1919-23, 2010. [PUBMED Abstract]
  7. Berres ML, Lim KP, Peters T, et al.: BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J Exp Med 211 (4): 669-83, 2014. [PUBMED Abstract]
  8. Satoh T, Smith A, Sarde A, et al.: B-RAF mutant alleles associated with Langerhans cell histiocytosis, a granulomatous pediatric disease. PLoS One 7 (4): e33891, 2012. [PUBMED Abstract]
  9. Sahm F, Capper D, Preusser M, et al.: BRAFV600E mutant protein is expressed in cells of variable maturation in Langerhans cell histiocytosis. Blood 120 (12): e28-34, 2012. [PUBMED Abstract]
  10. Héritier S, Hélias-Rodzewicz Z, Chakraborty R, et al.: New somatic BRAF splicing mutation in Langerhans cell histiocytosis. Mol Cancer 16 (1): 115, 2017. [PUBMED Abstract]
  11. Nelson DS, Quispel W, Badalian-Very G, et al.: Somatic activating ARAF mutations in Langerhans cell histiocytosis. Blood 123 (20): 3152-5, 2014. [PUBMED Abstract]
  12. Chakraborty R, Hampton OA, Shen X, et al.: Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood 124 (19): 3007-15, 2014. [PUBMED Abstract]
  13. Brown NA, Furtado LV, Betz BL, et al.: High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood 124 (10): 1655-8, 2014. [PUBMED Abstract]
  14. Chakraborty R, Burke TM, Hampton OA, et al.: Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis. Blood 128 (21): 2533-2537, 2016. [PUBMED Abstract]
  15. Héritier S, Hélias-Rodzewicz Z, Lapillonne H, et al.: Circulating cell-free BRAF(V600E) as a biomarker in children with Langerhans cell histiocytosis. Br J Haematol 178 (3): 457-467, 2017. [PUBMED Abstract]
  16. Michaloglou C, Vredeveld LC, Soengas MS, et al.: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436 (7051): 720-4, 2005. [PUBMED Abstract]
  17. Jones DT, Kocialkowski S, Liu L, et al.: Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68 (21): 8673-7, 2008. [PUBMED Abstract]
  18. Pfister S, Janzarik WG, Remke M, et al.: BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118 (5): 1739-49, 2008. [PUBMED Abstract]
  19. Jacob K, Quang-Khuong DA, Jones DT, et al.: Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clin Cancer Res 17 (14): 4650-60, 2011. [PUBMED Abstract]
  20. Larkin J, Ascierto PA, Dréno B, et al.: Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371 (20): 1867-76, 2014. [PUBMED Abstract]
  21. Long GV, Stroyakovskiy D, Gogas H, et al.: Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet 386 (9992): 444-51, 2015. [PUBMED Abstract]
  22. Haroche J, Cohen-Aubart F, Emile JF, et al.: Reproducible and sustained efficacy of targeted therapy with vemurafenib in patients with BRAF(V600E)-mutated Erdheim-Chester disease. J Clin Oncol 33 (5): 411-8, 2015. [PUBMED Abstract]
  23. Charles J, Beani JC, Fiandrino G, et al.: Major response to vemurafenib in patient with severe cutaneous Langerhans cell histiocytosis harboring BRAF V600E mutation. J Am Acad Dermatol 71 (3): e97-9, 2014. [PUBMED Abstract]
  24. Gandolfi L, Adamo S, Pileri A, et al.: Multisystemic and Multiresistant Langerhans Cell Histiocytosis: A Case Treated With BRAF Inhibitor. J Natl Compr Canc Netw 13 (6): 715-8, 2015. [PUBMED Abstract]
  25. Euskirchen P, Haroche J, Emile JF, et al.: Complete remission of critical neurohistiocytosis by vemurafenib. Neurol Neuroimmunol Neuroinflamm 2 (2): e78, 2015. [PUBMED Abstract]
  26. Hyman DM, Puzanov I, Subbiah V, et al.: Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N Engl J Med 373 (8): 726-36, 2015. [PUBMED Abstract]
  27. Héritier S, Jehanne M, Leverger G, et al.: Vemurafenib Use in an Infant for High-Risk Langerhans Cell Histiocytosis. JAMA Oncol 1 (6): 836-8, 2015. [PUBMED Abstract]
  28. Anforth R, Menzies A, Byth K, et al.: Factors influencing the development of cutaneous squamous cell carcinoma in patients on BRAF inhibitor therapy. J Am Acad Dermatol 72 (5): 809-15.e1, 2015. [PUBMED Abstract]
  29. Diamond EL, Subbiah V, Lockhart AC, et al.: Vemurafenib for BRAF V600-Mutant Erdheim-Chester Disease and Langerhans Cell Histiocytosis: Analysis of Data From the Histology-Independent, Phase 2, Open-label VE-BASKET Study. JAMA Oncol 4 (3): 384-388, 2018. [PUBMED Abstract]
  30. McClain KL, Picarsic J, Chakraborty R, et al.: CNS Langerhans cell histiocytosis: Common hematopoietic origin for LCH-associated neurodegeneration and mass lesions. Cancer 124 (12): 2607-2620, 2018. [PUBMED Abstract]

No hay comentarios:

Publicar un comentario