Una nueva técnica modifica el ADN humano con precisión récord
El método podría corregir el 89% de las 75.000 variantes genéticas asociadas a enfermedades, según sus autores
El químico estadounidense David Liu, de la Universidad de Harvard. CASEY ATKINS
Al químico californiano David Liu le prohibieron la entrada en el casino del hotel MGM Grand, en Las Vegas, cuando tenía 29 años. Ganaba demasiado dinero apostando en la mesa del blackjack, el juego de cartas en el que hay que sumar una puntuación lo más cercana a 21, pero sin pasarse. Triunfaba utilizando “matemáticas simples”, según aseguró por entonces en una entrevista con la revista de su universidad, la de Harvard, en EE UU. Hoy, Liu es uno de los mejores científicos del planeta. Y acaba de descubrir una nueva técnica para modificar con una precisión sin precedentes la información genética de los seres vivos.
Las células humanas tienen su manual de instrucciones escrito con cuatro letras (ATTGCTGAA…) en dos metros de ADN plegados de manera asombrosa. Las herramientas de edición genética, como la técnica CRISPR que ha revolucionado los laboratorios desde 2012, son capaces de buscar una secuencia concreta de letras y cortarla de manera específica con una especie de tijeras moleculares, insertando nueva información como si fuera un procesador de textos. El problema es que, a menudo, la operación falla y se generan mutaciones no deseadas. Como resultado, la mayor parte de las 75.000 variantes genéticas humanas asociadas a enfermedades no se pueden corregir actualmente en el laboratorio, según los cálculos del equipo de Liu. Su método, afirman, puede reparar el 89%.
"Es una propuesta disruptiva que obligará a revisar las posibilidades terapéuticas de la edición genética", opina el genetista Lluís Montoliu
La técnica, bautizada prime editing (“edición de calidad”), es “elegante y fascinante”, en palabras del genetista Lluís Montoliu, del Centro Nacional de Biotecnología, en Madrid. “Estamos ante una propuesta disruptiva, algo nuevo, que no existía y que obligará a revisar las posibilidades terapéuticas derivadas de la edición genética”, celebra. El equipo de Liu publica hoy en la revista Nature los resultados de 175 experimentos en células humanas en el laboratorio, incluyendo la corrección de las causas genéticas de trastornos como la anemia de células falciformes y la enfermedad de Tay-Sachs.
En una célula, las instrucciones contenidas en el ADN se traducen a otro lenguaje, el ARN, como paso intermedio para dirigir la fabricación de proteínas, por ejemplo la hemoglobina que transporta el oxígeno en la sangre o los anticuerpos que defienden al organismo del ataque de virus y bacterias. En la técnica CRISPR habitual, los científicos diseñan una molécula de ARN complementaria a la secuencia de ADN que quieren editar y añaden una proteína Cas9, que actúa como unas tijeras. Esta máquina molecular es capaz de encontrar el tramo de ADN deseado y cortarlo, añadiendo si es preciso otro fragmento de ADN con nueva información sintetizada por los científicos.
La estrategia de David Liu es diferente. El californiano, según explica Montoliu, ha inventado “una nueva proteína quimérica”, que utiliza una variante de las tijeras Cas9 capaz de cortar una sola de las dos cadenas que forman la característica doble hélice del ADN, evitando así mutaciones indeseadas.
Para dirigir su máquina molecular a un lugar concreto del genoma, Liu utiliza una guía de ARN y “nada menos que una transcriptasa reversa, una proteína que usan fundamentalmente los virus para copiar su ARN en ADN, invirtiendo el flujo canónico de la información genética, que parte del ADN y se copia a ARN, para acabar convirtiéndose en una proteína”, detalla Montoliu. “La guía de ARN en este caso se extiende y tiene un extremo nuevo, más largo, que es usado como molde por la transcriptasa reversa para copiar nuevo ADN con la secuencia correcta, con la mutación corregida”, añade el investigador. El prime editing escribe nueva información genética directamente en el genoma.
“Se necesita mucha más investigación en una amplia variedad de tipos celulares y organismos para entender mejor el prime editing y perfeccionarlo”, reconoce el equipo de Liu en su publicación en la revista Nature. Montoliu también es cauto, a la espera de que otros laboratorios del mundo ensayen la nueva herramienta. “Esa será la prueba del nueve que nos dirá si este procedimiento innovador para editar genomas va a tener posibilidades y recorrido terapéutico o si se va a quedar como una más de las decenas de propuestas con variantes alternativas de CRISPR que conocemos cada semana”, zanja.
“Un avance fascinante”
El año pasado nacieron en China los dos primeros bebés cuyo genoma fue modificado para que fuesen inmunes al virus del sida. Este avance logrado por el polémico científico He Jiankui fue recibido con alarma por la comunidad científica porque la técnica de edición genética CRISPR aún no es perfecta y puede generar mutaciones no deseadas en otras partes del genoma. El equipo de Liu ha demostrado en líneas celulares de laboratorio que el prime editing genera menos errores de edición en los lugares a los que va dirigido, aunque no ha analizado si hay errores fuera de sitio, advierte Hilary Sheppard, bióloga molecular de la Universidad de Auckland (Australia) en opiniones recogidas por Science Media Centre. “Este es un avance fascinante que podría solucionar algunos de los problemas actuales de la edición genética, aunque aún queda tiempo hasta demostrar que puede corregir errores en el tipo de células esperado y en contextos clínicos”, explica la investigadora.
No hay comentarios:
Publicar un comentario