Intensify Research on the Major Drivers of Childhood Cancers
NCI has announced several funding opportunities that align with the Cancer Moonshot.
See Funding OpportunitiesChromosomes can rearrange themselves, leading to the formation of fusion oncoproteins. These abnormal fusion proteins are drivers of cancer, particularly childhood cancers. However, there are few cancer therapies that target the type of target fusion oncoproteins that are most common in children. A greater understanding of these fusion oncoproteins is needed to make progress in pediatric cancer research and develop new treatments for childhood cancers.
The goal of this recommendation is to develop a coordinated research effort that will help improve the understanding of these fusion oncoproteins that drive selected cancers. Using a collaborative approach, the network aims to learn more about how fusion oncoprotein-driven cancers develop, create experimental models, identify key dependencies of fusion oncoproteins, and apply this knowledge to create new therapeutic strategies for childhood cancers.
Ultimately, the hope is that the information gained, and progress made from studying these pediatric fusion oncoproteins will provide insight into childhood cancer development and potentially uncover new therapeutic opportunities for pediatric cancers.
NCI has awarded funding to several research projects that align with the panel's recommendation to address the major drivers of childhood cancer, including the:
Fusion Oncoproteins in Childhood Cancers (FusOnC2) Consortium
This collaborative research network is advancing the understanding of the biology of fusion oncoproteins in childhood cancers to inform the development of targeted treatments for pediatric cancer patients. The network brings together researchers with expertise in structural biology, proteomics, genomics, medicinal chemistry, pharmacology, and cancer biology who are teaming up to gain insights into the molecular drivers of childhood cancers.
FusOnC2 is specifically focusing on improving the knowledge of pediatric cancers that are at high-risk for treatment failure, or for which there are currently no known effective targeted therapies. This network is moving the field of childhood fusion oncoproteins forward towards new, more effective treatments with fewer side effects for pediatric cancer patients.
In addition to the FusOnC2 network, NCI also supports additional interdisciplinary projects to study the mechanisms of action of fusion oncoproteins in childhood cancers. These projects involve collaborations between two or more researchers, and the initiative was designed to encourage cancer researchers to expand their studies to pediatric cancers. Researchers involved in these projects are investigating molecular events related to pediatric tumor progression, signaling pathways related to treatment resistance in childhood cancers, and the role of the tumor environment in childhood cancers.
No hay comentarios:
Publicar un comentario