miércoles, 21 de agosto de 2019

Tratamiento del sarcoma de Ewing (PDQ®)–Versión para profesionales de salud - Instituto Nacional del Cáncer

Tratamiento del sarcoma de Ewing (PDQ®)–Versión para profesionales de salud - Instituto Nacional del Cáncer

Instituto Nacional Del Cáncer

Tratamiento del sarcoma de Ewing (PDQ®)–Versión para profesionales de salud

Información general sobre el sarcoma de Ewing

Se han logrado mejoras notables en la supervivencia de niños y adolescentes con cáncer.[1] Entre 1975 y 2010, la mortalidad por cáncer infantil disminuyó en más de 50 %.[1] Para el sarcoma de Ewing, la tasa de supervivencia general a 5 años aumentó durante el mismo período de 59 a 78 % en los niños menores de 15 años y de 20 a 60 % en los adolescentes de 15 a 19 años.[1]
En los estudios en los que se usan marcadores inmunohistoquímicos,[2] citogenéticos,[3,4] genético-moleculares y cultivos tisulares,[5] se indica que el sarcoma de Ewing se deriva de células madre mesenquimatosas primitivas de la médula ósea.[6,7] Los términos más antiguos como tumor neuroectodérmico primitivo, tumor de Askin (sarcoma de Ewing de la pared torácica) y sarcoma de Ewing extraóseo (a menudo combinados en el término tumores de la familia del sarcoma de Ewing) se refieren al mismo tumor.

Incidencia

La incidencia del sarcoma de Ewing ha permanecido sin cambio durante los últimos 30 años.[8] En los Estados Unidos, la incidencia en todas las edades es de 1 caso por millón de personas. En los pacientes de 10 a 19 años, la incidencia oscila entre 9 y 10 casos por millón de personas. El mismo análisis indica que la incidencia del sarcoma de Ewing en los Estados Unidos es nueve veces mayor en las personas blancas que en las de origen afroamericano, con una incidencia intermedia en las personas de origen asiático.[9,10]
La relativa poca frecuencia del sarcoma de Ewing en las personas de ascendencia africana o asiática se puede explicar, en parte, por un polimorfismo específico en el gen EGR2.
La mediana de edad de los pacientes con sarcoma de Ewing es de 15 años, y más de 50 % de los pacientes son adolescentes. Se han descrito casos bien caracterizados de sarcoma de Ewing en recién nacidos y lactantes.[11,12] Según los datos de 1426 pacientes consignados en los estudios denominados European Intergroup Cooperative Ewing Sarcoma Studies, 59 % de los pacientes son varones y 41 % son mujeres.[13]

Cuadro clínico inicial

Los sitios primarios de enfermedad ósea son los siguientes:
  • Extremidades inferiores (41 %).
  • Pelvis (26 %).
  • Pared torácica (16 %).
  • Extremidades superiores (9 %).
  • Columna vertebral (6 %).
  • Pies y manos (3 %).[14]
  • Cráneo (2 %).
Los sitios primarios más comunes de los tumores extraóseos son los siguientes:[15,16]
  • Tronco (32 %).
  • Extremidades (26 %).
  • Cabeza y cuello (18 %).
  • Retroperitoneo (16 %).
  • Otros sitios (9 %).
Con frecuencia, la mediana de tiempo desde el primer síntoma hasta el diagnóstico de sarcoma de Ewing es larga, con un intervalo mediano de 2 a 5 meses. Los tiempos más prolongados se relacionan con la edad avanzada y sitios pélvicos primarios. El tiempo transcurrido desde la presentación del primer síntoma hasta el diagnóstico no se relacionó con metástasis, desenlace quirúrgico o supervivencia.[17] Alrededor de 25 % de los pacientes de sarcoma de Ewing presentarán enfermedad metastásica en el momento del diagnóstico.[8]
Se usó la base de datos del Surveillance, Epidemiology, and End Results (SEER) para comparar los pacientes de sarcoma de Ewing menores de 40 años que presentaban sitios primarios óseos y extraóseos, (consultar el Cuadro 1).[18] En comparación con los pacientes de sarcoma de Ewing óseo, fue más probable que los pacientes de sarcoma de Ewing extraóseo tuvieran más edad, fueran mujeres, no fueran blancos y presentaran sitios primarios axiales; y fue menos probable que presentaran sitios primarios pélvicos.
Cuadro 1. Características de los niños con sarcoma de Ewing extraóseo y sarcoma de Ewing óseo
CaracterísticaSarcoma de Ewing extraóseoSarcoma de Ewing óseoValor de P
Media de edad (intervalo), años20 (0–39)16 (0–39)<0,001
Masculino53 %63 %<0,001
Blancos85 %93 %<0,001
Sitios primarios axiales73 %54 %<0,001
Sitios primarios pélvicos20 %27 %0,001

Evaluación diagnóstica

Para diagnosticar o estadificar un sarcoma de Ewing se usan las siguientes pruebas y procedimientos:
  • Examen físico y antecedentes.
  • Imágenes por resonancia magnética (IRM).
  • Tomografía computarizada (TC).
  • Tomografía por emisión de positrones (TEP).
  • Gammagrafía ósea.
  • Aspiración de médula ósea y biopsia.
  • Radiografía.
  • Recuento sanguíneo completo.
  • Estudios químicos de la sangre, como de lactato-deshidrogenasa (LDH).
Para obtener información sobre la biopsia diagnóstica, consultar la sección de este sumario sobre Aspectos generales de las opciones de tratamiento del sarcoma de Ewing.

Factores pronósticos

Los dos tipos principales de factores pronósticos para pacientes de sarcoma de Ewing se agrupan como sigue:

Factores previos al tratamiento

  • Sitio del tumor: los pacientes de sarcoma de Ewing en las extremidades distales tienen el mejor pronóstico. Los pacientes de sarcoma de Ewing en las extremidades proximales tienen un pronóstico intermedio, seguido de los pacientes con sitios centrales o pélvicos.[19-22]
  • Tumores primarios extraóseos versus óseos: el Children's Oncology Group (COG) realizó un análisis retrospectivo de dos grandes ensayos en colaboración en los que usaron regímenes similares.[23] Se identificó a 213 pacientes con tumores primarios extraóseos y 826 pacientes con tumores primarios óseos. Fue más probable que los pacientes con tumores primarios extraóseos presentaran un sitio primario axial y fue menos probable que tuvieran tumores primarios de tamaño grande en comparación con los pacientes con tumores primarios óseos; además el pronóstico de los primeros fue más favorable y estadísticamente significativo.
  • Tamaño o volumen del tumor: en la mayoría de los estudios se ha observado que el tamaño del tumor es un factor pronóstico importante. Para definir los tumores más grandes se usa un límite de volumen de 100 o 200 ml, o una sola dimensión mayor de 8 cm. Los tumores más grandes tienden a presentarse en sitios desfavorables.[21,22,24]
  • Edad: los lactantes y los pacientes más jóvenes tienen un mejor pronóstico que los pacientes de 15 años y más, tal como se nota en los siguientes estudios:[12,19,20,22,25,26]
    • En estudios realizados en América del Norte, los pacientes menores de 10 años tuvieron un mejor desenlace que aquellos de 10 a 17 años en el momento del diagnóstico (riesgo relativo [RR], 1,4). Los pacientes mayores de 18 años tuvieron un desenlace inferior (RR, 2,5).[27-29]
    • En una revisión retrospectiva de dos ensayos alemanes consecutivos de sarcoma de Ewing, se identificó a 47 pacientes mayores de 40 años.[30] Con un tratamiento multimodal adecuado, la supervivencia fue comparable a la observada en los adolescentes tratados en los mismos ensayos.
    • En una revisión de la base de datos SEER de 1973 a 2011, se identificó a 1957 pacientes de sarcoma de Ewing.[31] Treinta y nueve pacientes (2,0 %) eran menores de 12 meses en el momento del diagnóstico. Fue menos probable que los lactantes recibieran radioterapia y más probable que presentaran sitios primarios en el tejido blando. La muerte prematura fue más frecuente en los lactantes, pero la supervivencia general (SG) no difirió significativamente de la supervivencia de los pacientes de más edad.
    • En una revisión retrospectiva realizada en Europa, se identificó a 2635 pacientes de sarcoma de Ewing óseo.[32] Los sitios de los tumores primarios y metastásicos difirieron de acuerdo con los grupos de edad de niños pequeños (0–9 años), adolescencia temprana (10–14 años), adolescencia tardía (15–19 años), adultos jóvenes (20–24 años) y adultos (mayores de 24 años). Los niños pequeños exhibían las diferencias más notables con respecto al sitio de la enfermedad, con una proporción más baja de tumores primarios pélvicos y axiales. Los niños pequeños también presentaron con menos frecuencia enfermedad metastásica en el momento del diagnóstico.
  • Sexo: las niñas con sarcoma de Ewing tienen un pronóstico mejor que los niños con este sarcoma.[9,20,22]
  • LDH sérica: un aumento en las concentraciones de LDH antes del tratamiento se relaciona con un pronóstico inferior. El aumento de las concentraciones de LDH también se correlaciona con tumores primarios grandes y enfermedad metastásica.[20]
  • Metástasis: la presencia o ausencia de enfermedad metastásica es el factor pronóstico más importante para predecir un desenlace. Cualquier enfermedad metastásica, definida mediante técnicas estándar de imaginología o aspiración/biopsia de médula ósea para determinar su morfología, constituye un factor de pronóstico adverso. En casi 25 % de los pacientes se detectan metástasis en el momento del diagnóstico.[8]
    Los pacientes con enfermedad metastásica confinada en el pulmón tienen pronóstico mejor que aquellos con sitios metastásicos extrapulmonares.[19,21,22,33] El número de lesiones pulmonares no parece correlacionarse con el desenlace, pero los pacientes con compromiso pulmonar unilateral tienen mejores desenlaces que aquellos con compromiso pulmonar bilateral.[34]
    Los pacientes con metástasis solo en los huesos parecen tener un mejor desenlace que aquellos con metástasis tanto óseas como pulmonares.[35,36]
    Con base en un análisis de la base de datos del SEER, el compromiso de ganglios linfáticos regionales en los pacientes se relaciona con un desenlace general inferior en comparación con aquellos pacientes sin compromiso de estos ganglios.[37]
  • Fractura patológica: en un análisis retrospectivo de 78 pacientes con sarcoma de Ewing realizado en una sola institución, se sugirió que la fractura patológica en el cuadro clínico inicial se relacionaba con una supervivencia sin complicaciones (SSC) y una SG inferiores.[38][Grado de comprobación: 3iiA]
  • Tratamiento previo de un cáncer: en la base de datos de SEER, se diagnosticó a 58 pacientes con sarcoma de Ewing después del tratamiento de una neoplasia maligna previa (2,1 % de los pacientes con sarcoma de Ewing) en contraste con 2756 pacientes a quienes se les diagnosticó un sarcoma de Ewing como primer cáncer durante el mismo período. Los pacientes cuyo sarcoma de Ewing era una neoplasia maligna secundaria tenían más años (sarcoma de Ewing secundario, mediana de edad de 47,8 años; sarcoma de Ewing primario, mediana de edad de 22,5 años), fue más probable que presentaran un tumor primario en un sitio axial o extraóseo y tuvieron un pronóstico más precario (SG a 5 años para los pacientes de sarcoma de Ewing secundario, 43,5 %; para los pacientes de sarcoma de Ewing primario, 64,2 %).[39]
  • Características citogenéticas estándar: un cariotipo complejo (definido como la presencia de cinco o más anomalías cromosómicas independientes en el momento del diagnóstico) y cifras cromosómicas modales menores de 50 parecen tener un significado pronóstico adverso.[40]
  • Transcriptos de fusión detectables en médula morfológicamente normal: la reacción en cadena de la polimerasa con retrotranscripción (RCP-RT) se puede usar para detectar los transcriptos de fusión en la médula ósea. En un solo estudio retrospectivo de pacientes con morfología medular normal y sin ningún otro sitio metastásico, la detección de transcriptos de fusión en la médula se relacionó con un aumento de riesgo de recaída.[41]
  • Otros factores biológicos: la sobrexpresión de la proteína p53, la expresión de Ki67 y la pérdida de 16q pueden ser factores pronósticos adversos.[42-44] En el sarcoma de Ewing, la expresión alta de glutatión S-transferasa microsómica, una enzima relacionada con resistencia a la doxorrubicina, se relaciona con un desenlace inferior.[45]
    El COG llevó a cabo un análisis prospectivo de mutaciones en TP53 o deleciones en CDKN2A en pacientes de sarcoma de Ewing; no se encontró correlación con la SSC.[46]
Los siguientes no se consideran que sean factores de pronóstico adverso del sarcoma de Ewing:
  • Características histopatológicas: el grado de diferenciación neural no constituye un factor pronóstico del sarcoma de Ewing.[47,48]
  • Características patológicas moleculares: la translocación EWSR1-ETS relacionada con el sarcoma de Ewing se puede presentar en varios puntos de ruptura posibles en cada uno de los genes que se unen para formar el segmento nuevo de ADN. Si bien alguna vez se consideró como algo significativo,[49] en dos series grandes se observó que el sitio de ruptura de la translocación EWSR1-ETS no es un factor de pronóstico adverso.[50,51]

Factores de reacción al tratamiento inicial

En múltiples estudios, se observó que los pacientes con tumores viables mínimos o sin residuo tumoral sometidos a quimioterapia prequirúrgica tienen una SSC significativamente mejor que los pacientes con mayores cantidades de tumor viable.[52-55] El sexo femenino y la edad más joven pronostican una buena reacción histológica a la terapia preoperatoria.[56] En aquellos pacientes sometidos a TEP antes y después de la quimioterapia de inducción, una disminución en la captación mediante TEP después de la quimioterapia se correlacionó con una buena reacción histológica y mejor desenlace.[57-59]
Los pacientes con respuesta precaria a la quimioterapia antes de la cirugía presentan un aumento de riesgo de recidiva local.[60]
Detección del sarcoma de Ewing en la sangre periférica
Se han propuesto varias técnicas para evaluar la presencia del sarcoma de Ewing en la sangre periférica. La citometría de flujo para analizar células que expresan el antígeno CD99 no exhibió suficiente sensibilidad para servir como biomarcador confiable.[41,61] La RCP-RT para identificar la translocación EWSR1-FLI1 tampoco se consideró un biomarcador confiable.[62]
Con una técnica más sensible para la que se utilizaron cebadores específicos del paciente diseñados después de identificar el sitio de ruptura de la translocación específica en combinación con RCP digital en nanogotas, se notificó una sensibilidad de 0,018 a 0,009 %.[63] Las concentraciones de ADN libre de células circulantes fueron más altas en los pacientes con enfermedad metastásica que en los pacientes con enfermedad localizada. Se formuló un ensayo de secuenciación de captura híbrida para el que se emplearon los intrones en los que aparecen las fusiones EWSR1 y FLI1 para detectar la translocación EWSR1-FLI1 en el ADN libre de células circulantes.[64] Mediante este método, se detectó la translocación en las muestras de sangre periférica de 10 de 11 pacientes de sarcoma de Ewing. Se necesita más estudio para determinar si el ADN libre de células circulantes será útil como biomarcador del sarcoma de Ewing para vigilar el estado de la enfermedad y la respuesta al tratamiento.
Bibliografía
  1. Smith MA, Altekruse SF, Adamson PC, et al.: Declining childhood and adolescent cancer mortality. Cancer 120 (16): 2497-506, 2014. [PUBMED Abstract]
  2. Olsen SH, Thomas DG, Lucas DR: Cluster analysis of immunohistochemical profiles in synovial sarcoma, malignant peripheral nerve sheath tumor, and Ewing sarcoma. Mod Pathol 19 (5): 659-68, 2006. [PUBMED Abstract]
  3. Delattre O, Zucman J, Melot T, et al.: The Ewing family of tumors--a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331 (5): 294-9, 1994. [PUBMED Abstract]
  4. Dagher R, Pham TA, Sorbara L, et al.: Molecular confirmation of Ewing sarcoma. J Pediatr Hematol Oncol 23 (4): 221-4, 2001. [PUBMED Abstract]
  5. Llombart-Bosch A, Carda C, Peydro-Olaya A, et al.: Soft tissue Ewing's sarcoma. Characterization in established cultures and xenografts with evidence of a neuroectodermic phenotype. Cancer 66 (12): 2589-601, 1990. [PUBMED Abstract]
  6. Suvà ML, Riggi N, Stehle JC, et al.: Identification of cancer stem cells in Ewing's sarcoma. Cancer Res 69 (5): 1776-81, 2009. [PUBMED Abstract]
  7. Tirode F, Laud-Duval K, Prieur A, et al.: Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11 (5): 421-9, 2007. [PUBMED Abstract]
  8. Esiashvili N, Goodman M, Marcus RB Jr: Changes in incidence and survival of Ewing sarcoma patients over the past 3 decades: Surveillance Epidemiology and End Results data. J Pediatr Hematol Oncol 30 (6): 425-30, 2008. [PUBMED Abstract]
  9. Jawad MU, Cheung MC, Min ES, et al.: Ewing sarcoma demonstrates racial disparities in incidence-related and sex-related differences in outcome: an analysis of 1631 cases from the SEER database, 1973-2005. Cancer 115 (15): 3526-36, 2009. [PUBMED Abstract]
  10. Beck R, Monument MJ, Watkins WS, et al.: EWS/FLI-responsive GGAA microsatellites exhibit polymorphic differences between European and African populations. Cancer Genet 205 (6): 304-12, 2012. [PUBMED Abstract]
  11. Kim SY, Tsokos M, Helman LJ: Dilemmas associated with congenital ewing sarcoma family tumors. J Pediatr Hematol Oncol 30 (1): 4-7, 2008. [PUBMED Abstract]
  12. van den Berg H, Dirksen U, Ranft A, et al.: Ewing tumors in infants. Pediatr Blood Cancer 50 (4): 761-4, 2008. [PUBMED Abstract]
  13. Paulussen M, Craft AW, Lewis I, et al.: Results of the EICESS-92 Study: two randomized trials of Ewing's sarcoma treatment--cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. J Clin Oncol 26 (27): 4385-93, 2008. [PUBMED Abstract]
  14. Froeb D, Ranft A, Boelling T, et al.: Ewing sarcoma of the hand or foot. Klin Padiatr 224 (6): 348-52, 2012. [PUBMED Abstract]
  15. Raney RB, Asmar L, Newton WA Jr, et al.: Ewing's sarcoma of soft tissues in childhood: a report from the Intergroup Rhabdomyosarcoma Study, 1972 to 1991. J Clin Oncol 15 (2): 574-82, 1997. [PUBMED Abstract]
  16. Rowe RG, Thomas DG, Schuetze SM, et al.: Ewing sarcoma of the kidney: case series and literature review of an often overlooked entity in the diagnosis of primary renal tumors. Urology 81 (2): 347-53, 2013. [PUBMED Abstract]
  17. Brasme JF, Chalumeau M, Oberlin O, et al.: Time to diagnosis of Ewing tumors in children and adolescents is not associated with metastasis or survival: a prospective multicenter study of 436 patients. J Clin Oncol 32 (18): 1935-40, 2014. [PUBMED Abstract]
  18. Applebaum MA, Worch J, Matthay KK, et al.: Clinical features and outcomes in patients with extraskeletal Ewing sarcoma. Cancer 117 (13): 3027-32, 2011. [PUBMED Abstract]
  19. Cotterill SJ, Ahrens S, Paulussen M, et al.: Prognostic factors in Ewing's tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing's Sarcoma Study Group. J Clin Oncol 18 (17): 3108-14, 2000. [PUBMED Abstract]
  20. Bacci G, Longhi A, Ferrari S, et al.: Prognostic factors in non-metastatic Ewing's sarcoma tumor of bone: an analysis of 579 patients treated at a single institution with adjuvant or neoadjuvant chemotherapy between 1972 and 1998. Acta Oncol 45 (4): 469-75, 2006. [PUBMED Abstract]
  21. Rodríguez-Galindo C, Liu T, Krasin MJ, et al.: Analysis of prognostic factors in ewing sarcoma family of tumors: review of St. Jude Children's Research Hospital studies. Cancer 110 (2): 375-84, 2007. [PUBMED Abstract]
  22. Karski EE, McIlvaine E, Segal MR, et al.: Identification of Discrete Prognostic Groups in Ewing Sarcoma. Pediatr Blood Cancer 63 (1): 47-53, 2016. [PUBMED Abstract]
  23. Cash T, McIlvaine E, Krailo MD, et al.: Comparison of clinical features and outcomes in patients with extraskeletal versus skeletal localized Ewing sarcoma: A report from the Children's Oncology Group. Pediatr Blood Cancer 63 (10): 1771-9, 2016. [PUBMED Abstract]
  24. Ahrens S, Hoffmann C, Jabar S, et al.: Evaluation of prognostic factors in a tumor volume-adapted treatment strategy for localized Ewing sarcoma of bone: the CESS 86 experience. Cooperative Ewing Sarcoma Study. Med Pediatr Oncol 32 (3): 186-95, 1999. [PUBMED Abstract]
  25. De Ioris MA, Prete A, Cozza R, et al.: Ewing sarcoma of the bone in children under 6 years of age. PLoS One 8 (1): e53223, 2013. [PUBMED Abstract]
  26. Huh WW, Daw NC, Herzog CE, et al.: Ewing sarcoma family of tumors in children younger than 10 years of age. Pediatr Blood Cancer 64 (4): , 2017. [PUBMED Abstract]
  27. Grier HE, Krailo MD, Tarbell NJ, et al.: Addition of ifosfamide and etoposide to standard chemotherapy for Ewing's sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 348 (8): 694-701, 2003. [PUBMED Abstract]
  28. Granowetter L, Womer R, Devidas M, et al.: Dose-intensified compared with standard chemotherapy for nonmetastatic Ewing sarcoma family of tumors: a Children's Oncology Group Study. J Clin Oncol 27 (15): 2536-41, 2009. [PUBMED Abstract]
  29. Womer RB, West DC, Krailo MD, et al.: Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children's Oncology Group. J Clin Oncol 30 (33): 4148-54, 2012. [PUBMED Abstract]
  30. Pieper S, Ranft A, Braun-Munzinger G, et al.: Ewing's tumors over the age of 40: a retrospective analysis of 47 patients treated according to the International Clinical Trials EICESS 92 and EURO-E.W.I.N.G. 99. Onkologie 31 (12): 657-63, 2008. [PUBMED Abstract]
  31. Wong T, Goldsby RE, Wustrack R, et al.: Clinical features and outcomes of infants with Ewing sarcoma under 12 months of age. Pediatr Blood Cancer 62 (11): 1947-51, 2015. [PUBMED Abstract]
  32. Worch J, Ranft A, DuBois SG, et al.: Age dependency of primary tumor sites and metastases in patients with Ewing sarcoma. Pediatr Blood Cancer : e27251, 2018. [PUBMED Abstract]
  33. Miser JS, Krailo MD, Tarbell NJ, et al.: Treatment of metastatic Ewing's sarcoma or primitive neuroectodermal tumor of bone: evaluation of combination ifosfamide and etoposide--a Children's Cancer Group and Pediatric Oncology Group study. J Clin Oncol 22 (14): 2873-6, 2004. [PUBMED Abstract]
  34. Paulussen M, Ahrens S, Craft AW, et al.: Ewing's tumors with primary lung metastases: survival analysis of 114 (European Intergroup) Cooperative Ewing's Sarcoma Studies patients. J Clin Oncol 16 (9): 3044-52, 1998. [PUBMED Abstract]
  35. Paulussen M, Ahrens S, Burdach S, et al.: Primary metastatic (stage IV) Ewing tumor: survival analysis of 171 patients from the EICESS studies. European Intergroup Cooperative Ewing Sarcoma Studies. Ann Oncol 9 (3): 275-81, 1998. [PUBMED Abstract]
  36. Ladenstein R, Pötschger U, Le Deley MC, et al.: Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial. J Clin Oncol 28 (20): 3284-91, 2010. [PUBMED Abstract]
  37. Applebaum MA, Goldsby R, Neuhaus J, et al.: Clinical features and outcomes in patients with Ewing sarcoma and regional lymph node involvement. Pediatr Blood Cancer 59 (4): 617-20, 2012. [PUBMED Abstract]
  38. Schlegel M, Zeumer M, Prodinger PM, et al.: Impact of Pathological Fractures on the Prognosis of Primary Malignant Bone Sarcoma in Children and Adults: A Single-Center Retrospective Study of 205 Patients. Oncology 94 (6): 354-362, 2018. [PUBMED Abstract]
  39. Applebaum MA, Goldsby R, Neuhaus J, et al.: Clinical features and outcomes in patients with secondary Ewing sarcoma. Pediatr Blood Cancer 60 (4): 611-5, 2013. [PUBMED Abstract]
  40. Roberts P, Burchill SA, Brownhill S, et al.: Ploidy and karyotype complexity are powerful prognostic indicators in the Ewing's sarcoma family of tumors: a study by the United Kingdom Cancer Cytogenetics and the Children's Cancer and Leukaemia Group. Genes Chromosomes Cancer 47 (3): 207-20, 2008. [PUBMED Abstract]
  41. Schleiermacher G, Peter M, Oberlin O, et al.: Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized ewing tumor. J Clin Oncol 21 (1): 85-91, 2003. [PUBMED Abstract]
  42. Abudu A, Mangham DC, Reynolds GM, et al.: Overexpression of p53 protein in primary Ewing's sarcoma of bone: relationship to tumour stage, response and prognosis. Br J Cancer 79 (7-8): 1185-9, 1999. [PUBMED Abstract]
  43. López-Guerrero JA, Machado I, Scotlandi K, et al.: Clinicopathological significance of cell cycle regulation markers in a large series of genetically confirmed Ewing's sarcoma family of tumors. Int J Cancer 128 (5): 1139-50, 2011. [PUBMED Abstract]
  44. Ozaki T, Paulussen M, Poremba C, et al.: Genetic imbalances revealed by comparative genomic hybridization in Ewing tumors. Genes Chromosomes Cancer 32 (2): 164-71, 2001. [PUBMED Abstract]
  45. Scotlandi K, Remondini D, Castellani G, et al.: Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome. J Clin Oncol 27 (13): 2209-16, 2009. [PUBMED Abstract]
  46. Lerman DM, Monument MJ, McIlvaine E, et al.: Tumoral TP53 and/or CDKN2A alterations are not reliable prognostic biomarkers in patients with localized Ewing sarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 62 (5): 759-65, 2015. [PUBMED Abstract]
  47. Parham DM, Hijazi Y, Steinberg SM, et al.: Neuroectodermal differentiation in Ewing's sarcoma family of tumors does not predict tumor behavior. Hum Pathol 30 (8): 911-8, 1999. [PUBMED Abstract]
  48. Luksch R, Sampietro G, Collini P, et al.: Prognostic value of clinicopathologic characteristics including neuroectodermal differentiation in osseous Ewing's sarcoma family of tumors in children. Tumori 85 (2): 101-7, 1999 Mar-Apr. [PUBMED Abstract]
  49. de Alava E, Kawai A, Healey JH, et al.: EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing's sarcoma. J Clin Oncol 16 (4): 1248-55, 1998. [PUBMED Abstract]
  50. van Doorninck JA, Ji L, Schaub B, et al.: Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma: a report from the Children's Oncology Group. J Clin Oncol 28 (12): 1989-94, 2010. [PUBMED Abstract]
  51. Le Deley MC, Delattre O, Schaefer KL, et al.: Impact of EWS-ETS fusion type on disease progression in Ewing's sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial. J Clin Oncol 28 (12): 1982-8, 2010. [PUBMED Abstract]
  52. Paulussen M, Ahrens S, Dunst J, et al.: Localized Ewing tumor of bone: final results of the cooperative Ewing's Sarcoma Study CESS 86. J Clin Oncol 19 (6): 1818-29, 2001. [PUBMED Abstract]
  53. Rosito P, Mancini AF, Rondelli R, et al.: Italian Cooperative Study for the treatment of children and young adults with localized Ewing sarcoma of bone: a preliminary report of 6 years of experience. Cancer 86 (3): 421-8, 1999. [PUBMED Abstract]
  54. Wunder JS, Paulian G, Huvos AG, et al.: The histological response to chemotherapy as a predictor of the oncological outcome of operative treatment of Ewing sarcoma. J Bone Joint Surg Am 80 (7): 1020-33, 1998. [PUBMED Abstract]
  55. Oberlin O, Deley MC, Bui BN, et al.: Prognostic factors in localized Ewing's tumours and peripheral neuroectodermal tumours: the third study of the French Society of Paediatric Oncology (EW88 study). Br J Cancer 85 (11): 1646-54, 2001. [PUBMED Abstract]
  56. Ferrari S, Bertoni F, Palmerini E, et al.: Predictive factors of histologic response to primary chemotherapy in patients with Ewing sarcoma. J Pediatr Hematol Oncol 29 (6): 364-8, 2007. [PUBMED Abstract]
  57. Hawkins DS, Schuetze SM, Butrynski JE, et al.: [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 23 (34): 8828-34, 2005. [PUBMED Abstract]
  58. Denecke T, Hundsdörfer P, Misch D, et al.: Assessment of histological response of paediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters. Eur J Nucl Med Mol Imaging 37 (10): 1842-53, 2010. [PUBMED Abstract]
  59. Palmerini E, Colangeli M, Nanni C, et al.: The role of FDG PET/CT in patients treated with neoadjuvant chemotherapy for localized bone sarcomas. Eur J Nucl Med Mol Imaging 44 (2): 215-223, 2017. [PUBMED Abstract]
  60. Lin PP, Jaffe N, Herzog CE, et al.: Chemotherapy response is an important predictor of local recurrence in Ewing sarcoma. Cancer 109 (3): 603-11, 2007. [PUBMED Abstract]
  61. Dubois SG, Epling CL, Teague J, et al.: Flow cytometric detection of Ewing sarcoma cells in peripheral blood and bone marrow. Pediatr Blood Cancer 54 (1): 13-8, 2010. [PUBMED Abstract]
  62. Zoubek A, Ladenstein R, Windhager R, et al.: Predictive potential of testing for bone marrow involvement in Ewing tumor patients by RT-PCR: a preliminary evaluation. Int J Cancer 79 (1): 56-60, 1998. [PUBMED Abstract]
  63. Shukla NN, Patel JA, Magnan H, et al.: Plasma DNA-based molecular diagnosis, prognostication, and monitoring of patients with EWSR1 fusion-positive sarcomas. JCO Precis Oncol 2017: , 2017. [PUBMED Abstract]
  64. Klega K, Imamovic-Tuco A, Ha G, et al.: Detection of Somatic Structural Variants Enables Quantification and Characterization of Circulating Tumor DNA in Children With Solid Tumors. JCO Precis Oncol 2018: , 2018. [PUBMED Abstract]

Clasificación celular del sarcoma de Ewing

El sarcoma de Ewing pertenece al grupo de neoplasias que se conocen, por lo general, como tumores de células pequeñas redondas y azules de la niñez. Las células individuales del sarcoma de Ewing contienen núcleos de forma redonda a ovalada con cromatina fina y dispersa sin nucléolos. En ocasiones, hay células con núcleos más pequeños, más hipercromáticos y probablemente degenerativos, que producen una configuración de célula clara/célula oscura. El citoplasma varía en cantidad, pero en el caso típico, es transparente y contiene glucógeno, que se puede destacar con un tinte de ácido peryódico de Schiff. Las células tumorales están muy apretujadas y crecen en un patrón difuso sin signos de organización estructural. Los tumores con la translocación necesaria para que presenten diferenciación neuronal no se consideran como una entidad separada, sino parte de un proceso continuo de diferenciación.
El producto del gen MIC2, CD99, es una proteína de membrana que se manifiesta en la mayoría de los casos de sarcoma de Ewing y resulta útil para diagnosticar estos tumores cuando los resultados se interpretan en el contexto de parámetros clínicos y patológicos.[1] La positividad a MIC2 no es exclusiva del sarcoma de Ewing; dicha positividad determinada mediante inmunoquímica se encuentra en varios tumores, como el sarcoma sinovial, el linfoma no Hodgkin y los tumores del estroma gastrointestinal.
Bibliografía
  1. Parham DM, Hijazi Y, Steinberg SM, et al.: Neuroectodermal differentiation in Ewing's sarcoma family of tumors does not predict tumor behavior. Hum Pathol 30 (8): 911-8, 1999. [PUBMED Abstract]

Características genómicas del sarcoma de Ewing

La detección de una translocación que compromete el gen EWSR1 en el cromosoma 22 banda q12 y cualquiera de una cantidad de cromosomas recíprocos es la característica clave para diagnosticar el sarcoma de Ewing (consultar el Cuadro 2).[1] El gen EWSR1 es un miembro de la familia TET [TLS/EWS/TAF15] de proteínas de unión del ARN.[2] El gen FLI1es un miembro de la familia ETS de genes de unión del ADN. De manera característica, el extremo amínico del gen EWSR1 está yuxtapuesto con el extremo carboxílico del gen de la familia STS. En la mayoría de los casos (90 %), el extremo carboxílico lo proporciona FLI1, un gen miembro de la familia de factores de transcripción ubicado en el cromosoma 11, banda q24. Otros miembros de estas familias que se pueden combinar con el gen EWSR1son ERGETV1ETV4 (también llamado E1AF) y FEV.[3] En raras ocasiones, el TLS, otro miembro de la familia TET sustituye a EWSR1.[4] Por último, hay un escaso número de casos en los que se produce la translocación de EWSR1 con otros genes que no son miembros de la familia de oncogenes ETS. No se conoce la importancia de estos genes alternos.
Además de estas anomalías sistemáticas que comprometen el gen EWSR1 en 22q12, se observaron otras anomalías numéricas y estructurales en el sarcoma de Ewing, como ganancias de los cromosomas 2, 5, 8, 9, 12 y 15; la translocación no recíproca t(1;16)(q12;q11.2) y las deleciones en el brazo corto del cromosoma 6. Es posible que la trisomía 20 se relacione con un subconjunto más maligno de sarcoma de Ewing.[5]
En tres artículos se describió el panorama genómico del sarcoma de Ewing y en todos se describe que estos tumores tienen un genoma relativamente inactivo, con una escasez de mutaciones en las vías que podrían ser susceptibles al tratamiento con terapias dirigidas novedosas.[6-8] En estos artículos también se identificaron mutaciones en STAG2, un miembro del complejo de cohesina, en alrededor de 15 a 20 % de los casos; la presencia de estas mutaciones se relacionó con enfermedad en estadio avanzado. Se observaron deleciones de CDKN2A en 12 a 22 % de los casos. Por último, se identificaron mutaciones en TP53 en casi 6 a 7 % de los casos; la coexistencia de mutaciones en STAG2 y TP53 se relacionó con un desenlace clínico precario.[6-8]
La siguiente Figura 1 corresponde a una cohorte de descubrimiento (n = 99) en la que se resalta la frecuencia de la ganancia del cromosoma 8, la ocurrencia simultánea de ganancia del cromosoma 1q y pérdida del cromosoma 16q, la característica mutuamente excluyente de la deleción de CDKN2A y la mutación en STAG2, así como una escasez relativa de variantes de un nucleótido recurrentes en el sarcoma de Ewing.[6]
AMPLIAREn el diagrama se muestra un perfil detallado de las anomalías genéticas del sarcoma de Ewing con información clínica relacionada.
Figura 1. Perfil detallado de las anomalías genéticas del sarcoma de Ewing con información clínica relacionada. Se describen las características clínicas clave, como el sitio primario, el tipo de tejido, y el estado metastásico en el momento del diagnóstico, durante el seguimiento y el estado final. En la parte de abajo está la uniformidad de la detección de las fusiones génicas mediante reacción en cadena de la polimerasa con retrotranscripción (TR-PCR) y secuenciación de genoma completo (WGS). En escala de grises se describe la cantidad de variantes estructurales (SV) y de variantes de un nucleótido (SNV), así como las inserciones-deleciones (indels). Se indican los cambios principales en el número de copias, ganancia de chr 1q, pérdida de chr 16, ganancia chr 8, ganancia chr 12 y deleción de CDKN2A intersticial. Por último, se mencionan las mutaciones y tipos de mutaciones más importantes. En las mutaciones génicas, “others” se refiere a: duplicación del exón 22 que produce un desplazamiento del marco de lectura (STAG2), deleción de los exones 2 al 11 (BCOR), y deleción de los exones 1 a 6 (ZMYM3). Reproducción autorizada de Cancer Discovery, derechos de autor 2014, 4 (11), 1342–53, Tirode F, Surdez D, Ma X, et al., Genomic Landscape of Ewing Sarcoma Defines an Aggressive Subtype with Co-Association of STAG2 and TP53 mutations. Con autorización de AACR. Samples: muestras; clinical annotations: características clínicas; age: edad; localization: ubicación; tissue: tejido; extension: extensión; follow-up: seguimiento; status: estado; fusion type: tipo de fusión; structural alterations: alteraciones estructurales; nb: número; gain: ganancia; loss: pérdida; deletion: deleción; gene mutations: mutaciones génicas; legend: leyenda; tissue: tejido; osseous: óseo; soft tissue: tejido blando; extension at diagnosis: extensión en el momento del diagnóstico; no relapse: sin recidiva; localized relapse: recidiva localizada; metastatic relapse or progression: recidiva o progresión metastásica; alive: vivo; dead of disease: muerte causada por la enfermedad; dead of other causes: muerte por otras causas; undetected: indetectado; missing data: sin información; fractured genome: genoma fracturado; likely low tumor cell content: probablemente recuento bajo de células tumorales; CNAs: alteraciones en el número de copias; nonsense: mutación terminadora; missense: mutación de aminoácido; splice: corte y empalme.
Todas las translocaciones del sarcoma de Ewing se pueden encontrar mediante análisis citogenético estándar. En la actualidad, se realiza con frecuencia un análisis más rápido para lograr una descomposición del gen EWS y confirmar el diagnóstico molecular del sarcoma de Ewing.[9] Sin embargo, el resultado de esta prueba se debe considerar con cautela. En los sarcomas de Ewing que tienen las translocaciones de TLS se obtendrán resultados negativos en las pruebas porque no hay translocación del gen EWSR1. Además, otros tumores de células pequeñas y redondas también contienen translocaciones de diferentes miembros de la familia ETS con EWSR1, como el tumor desmoplásico de células pequeñas redondas, el sarcoma de células claras, el condrosarcoma mixoide extraesquelético y el liposarcoma mixoide, que pueden dar resultados todos positivos cuando se someten a hibridación fluorescente in situ (HFIS) con sonda de escisión para EWS. En un análisis minucioso de 85 pacientes con tumores de células pequeñas redondas y azules sin reordenamiento de EWSR1 se identificaron a 8 pacientes con reordenamiento de FUS mediante el uso de HFIS con una sonda de escisión de EWSR1.[10] No se logró identificar a 4 pacientes con fusiones EWSR1-ERG por HFIS con una sonda de escisión para EWSR1. Los autores recomiendan no confiar de forma exclusiva en las sondas de escisión para EWSR1 durante el análisis de tumores de células pequeñas redondas y azules con gran positividad inmunohistoquímica frente al CD99.
Se han analizado e identificado translocaciones en los tumores óseos y de tejidos blandos de células pequeñas redondas azules, que son histológicamente similares al sarcoma de Ewing, pero que no presentan reordenamientos del gen EWSR1. Estas incluyen BCOR-CCNB3CIC-DUX4 y CIC-FOX4.[11-14] El perfil molecular de estos tumores es diferente del perfil del sarcoma de Ewing con la translocación EWS-FLI1; las pocas pruebas disponibles indican que tienen un comportamiento clínico diferente. En casi todos los casos, los pacientes recibieron un tratamiento diseñado para el sarcoma de Ewing a partir de la similitud histológica e inmunohistológica con el sarcoma de Ewing. Hay muy pocos casos relacionados con cada translocación como para determinar si el pronóstico de estos tumores de células pequeñas redondas azules es distinto del pronóstico de un sarcoma de Ewing en estadio y sitio similares.[11-14]
En estudios de asociación del genoma completo, se identificaron locus de susceptibilidad para sarcoma de Ewing ubicados en 1p36.22, 10q21 y 15q15.[15-17] Mediante la secuenciación exhaustiva de la región 10q21.3, se identificó un polimorfismo en el gen EGR2 que parece cooperar con el producto de la fusión EWSR1-FLI1 y potencia su actividad, lo que se observa en la mayoría de los pacientes con sarcoma de Ewing.[16] El polimorfismo relacionado con el aumento del riesgo se encuentra con una frecuencia mucho más alta en las personas blancas que en las de origen afroamericano o asiático, lo que posiblemente explique la poca frecuencia relativa desde el punto de vista epidemiológico del sarcoma de Ewing en estas últimas poblaciones. Se identificaron tres locus de susceptibilidad nuevos en 6p25.1, 20p11.22 y 20p11.23.[17]
Cuadro 2. Fusiones y translocaciones de EWS y TLS en el sarcoma de Ewing
Miembro de la familia TETFusión con un oncogén recíproco similar a ETSTranslocaciónComentario
aEstos oncogenes recíprocos no son miembros de la familia de oncogenes ETS.
EWSEWSR1-FLI1t(11;22)(q24;q12)Más común; ~85 a 90 % de los casos
EWSR1-ERGt(21;22)(q22;q12)Más común en segundo término; ~10 % de los casos
EWSR1-ETV1t(7;22)(p22;q12)Poco frecuente
EWSR1-ETV4t(17;22)(q12;q12)Poco frecuente
EWSR1-FEVt(2;22)(q35;q12)Poco frecuente
EWSR1-NFATc2at(20;22)(q13;q12)Poco frecuente
EWSR1-POU5F1at(6;22)(p21;q12) 
EWSR1-SMARCA5at(4;22)(q31;q12)Poco frecuente
EWSR1-ZSGat(6;22)(p21;q12) 
EWSR1-SP3at(2;22)(q31;q12)Poco frecuente
TLS (también llamado FUS)TLS-ERGt(16;21)(p11;q22)Poco frecuente
TLS-FEVt(2;16)(q35;p11)Poco frecuente
Bibliografía
  1. Delattre O, Zucman J, Melot T, et al.: The Ewing family of tumors--a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331 (5): 294-9, 1994. [PUBMED Abstract]
  2. Urano F, Umezawa A, Yabe H, et al.: Molecular analysis of Ewing's sarcoma: another fusion gene, EWS-E1AF, available for diagnosis. Jpn J Cancer Res 89 (7): 703-11, 1998. [PUBMED Abstract]
  3. Hattinger CM, Rumpler S, Strehl S, et al.: Prognostic impact of deletions at 1p36 and numerical aberrations in Ewing tumors. Genes Chromosomes Cancer 24 (3): 243-54, 1999. [PUBMED Abstract]
  4. Sankar S, Lessnick SL: Promiscuous partnerships in Ewing's sarcoma. Cancer Genet 204 (7): 351-65, 2011. [PUBMED Abstract]
  5. Roberts P, Burchill SA, Brownhill S, et al.: Ploidy and karyotype complexity are powerful prognostic indicators in the Ewing's sarcoma family of tumors: a study by the United Kingdom Cancer Cytogenetics and the Children's Cancer and Leukaemia Group. Genes Chromosomes Cancer 47 (3): 207-20, 2008. [PUBMED Abstract]
  6. Tirode F, Surdez D, Ma X, et al.: Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov 4 (11): 1342-53, 2014. [PUBMED Abstract]
  7. Crompton BD, Stewart C, Taylor-Weiner A, et al.: The genomic landscape of pediatric Ewing sarcoma. Cancer Discov 4 (11): 1326-41, 2014. [PUBMED Abstract]
  8. Brohl AS, Solomon DA, Chang W, et al.: The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet 10 (7): e1004475, 2014. [PUBMED Abstract]
  9. Monforte-Muñoz H, Lopez-Terrada D, Affendie H, et al.: Documentation of EWS gene rearrangements by fluorescence in-situ hybridization (FISH) in frozen sections of Ewing's sarcoma-peripheral primitive neuroectodermal tumor. Am J Surg Pathol 23 (3): 309-15, 1999. [PUBMED Abstract]
  10. Chen S, Deniz K, Sung YS, et al.: Ewing sarcoma with ERG gene rearrangements: A molecular study focusing on the prevalence of FUS-ERG and common pitfalls in detecting EWSR1-ERG fusions by FISH. Genes Chromosomes Cancer 55 (4): 340-9, 2016. [PUBMED Abstract]
  11. Pierron G, Tirode F, Lucchesi C, et al.: A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 44 (4): 461-6, 2012. [PUBMED Abstract]
  12. Specht K, Sung YS, Zhang L, et al.: Distinct transcriptional signature and immunoprofile of CIC-DUX4 fusion-positive round cell tumors compared to EWSR1-rearranged Ewing sarcomas: further evidence toward distinct pathologic entities. Genes Chromosomes Cancer 53 (7): 622-33, 2014. [PUBMED Abstract]
  13. Sugita S, Arai Y, Tonooka A, et al.: A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol 38 (11): 1571-6, 2014. [PUBMED Abstract]
  14. Cohen-Gogo S, Cellier C, Coindre JM, et al.: Ewing-like sarcomas with BCOR-CCNB3 fusion transcript: a clinical, radiological and pathological retrospective study from the Société Française des Cancers de L'Enfant. Pediatr Blood Cancer 61 (12): 2191-8, 2014. [PUBMED Abstract]
  15. Postel-Vinay S, Véron AS, Tirode F, et al.: Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat Genet 44 (3): 323-7, 2012. [PUBMED Abstract]
  16. Grünewald TG, Bernard V, Gilardi-Hebenstreit P, et al.: Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite. Nat Genet 47 (9): 1073-8, 2015. [PUBMED Abstract]
  17. Machiela MJ, Grünewald TGP, Surdez D, et al.: Genome-wide association study identifies multiple new loci associated with Ewing sarcoma susceptibility. Nat Commun 9 (1): 3184, 2018. [PUBMED Abstract]

Información sobre los estadios del sarcoma de Ewing

Los estudios de estadificación pretratamiento son los siguientes:
  • Imágenes por resonancia magnética (IRM).
  • Tomografía computarizada (TC) del sitio primario y el tórax.
  • Tomografía por emisión de positrones (TEP) con flúor F 18-fludesoxiglucosa (18F-FDG) o TEP-TC con 18F-FDG.
  • Gammagrafía ósea.
  • Aspiración de médula ósea y biopsia.
Para pacientes con diagnóstico confirmado de sarcoma de Ewing, los estudios de estadificación previos al tratamiento son IRM o TC según el sitio primario. A pesar del hecho de que tanto la TC como las IRM son equivalentes en términos de estadificación, el uso de ambas modalidades de imaginología puede ayudar a planificar la radioterapia.[1] Es posible que las IRM de todo el cuerpo proporcionen información adicional que altere la planificación del tratamiento.[2] Los estudios adicionales de estadificación previa al tratamiento incluyen gammagrafía ósea y TC del tórax. En algunos estudios, la determinación del volumen tumoral previo al tratamiento es una variable importante.
Aunque la TEP con 18F-FDG o la TEP-TC con 18F-FDG son modalidades opcionales de estadificación, estas demostraron sensibilidad y especificidad altas para el sarcoma de Ewing y pueden proporcionar información adicional que altera la planificación del tratamiento. En un estudio institucional, la TEP con 18F-FDG exhibió una correlación muy alta con la gammagrafía ósea; los investigadores indicaron que aquella podría reemplazar la gammagrafía ósea en el período inicial de la evaluación del grado de la enfermedad.[3] Esta conclusión se confirmó en una revisión retrospectiva de una sola institución.[4] La TEP-TC con 18F-FDG es más precisa que la TEP sola con 18F-FDG para el sarcoma de Ewing.[5-7]
La aspiración y biopsia de la médula ósea se consideró el estándar de atención del sarcoma de Ewing. Sin embargo, en dos estudios retrospectivos se observó que, para los pacientes (N = 141) que se evaluaron mediante gammagrafía ósea o TEP y TC del pulmón sin pruebas de metástasis, los resultados de las aspiraciones y biopsias de médula ósea fueron negativos en cada caso.[3,8] En este momento, se cuestiona el uso rutinario de aspiraciones y biopsias de médula ósea para pacientes sin metástasis óseas.
En el caso del sarcoma de Ewing, el tumor se define como localizado cuando, mediante técnicas clínicas y de imaginología, no hay diseminación más allá del sitio primario o no hay compromiso de ganglios linfáticos regionales. Se puede presentar una extensión continua en el tejido blando adyacente. Si existiera duda sobre el compromiso de los ganglios linfáticos regionales, se indica una confirmación patológica.
Bibliografía
  1. Meyer JS, Nadel HR, Marina N, et al.: Imaging guidelines for children with Ewing sarcoma and osteosarcoma: a report from the Children's Oncology Group Bone Tumor Committee. Pediatr Blood Cancer 51 (2): 163-70, 2008. [PUBMED Abstract]
  2. Mentzel HJ, Kentouche K, Sauner D, et al.: Comparison of whole-body STIR-MRI and 99mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions. Eur Radiol 14 (12): 2297-302, 2004. [PUBMED Abstract]
  3. Newman EN, Jones RL, Hawkins DS: An evaluation of [F-18]-fluorodeoxy-D-glucose positron emission tomography, bone scan, and bone marrow aspiration/biopsy as staging investigations in Ewing sarcoma. Pediatr Blood Cancer 60 (7): 1113-7, 2013. [PUBMED Abstract]
  4. Ulaner GA, Magnan H, Healey JH, et al.: Is methylene diphosphonate bone scan necessary for initial staging of Ewing sarcoma if 18F-FDG PET/CT is performed? AJR Am J Roentgenol 202 (4): 859-67, 2014. [PUBMED Abstract]
  5. Völker T, Denecke T, Steffen I, et al.: Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25 (34): 5435-41, 2007. [PUBMED Abstract]
  6. Gerth HU, Juergens KU, Dirksen U, et al.: Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing tumors. J Nucl Med 48 (12): 1932-9, 2007. [PUBMED Abstract]
  7. Treglia G, Salsano M, Stefanelli A, et al.: Diagnostic accuracy of ¹⁸F-FDG-PET and PET/CT in patients with Ewing sarcoma family tumours: a systematic review and a meta-analysis. Skeletal Radiol 41 (3): 249-56, 2012. [PUBMED Abstract]
  8. Kopp LM, Hu C, Rozo B, et al.: Utility of bone marrow aspiration and biopsy in initial staging of Ewing sarcoma. Pediatr Blood Cancer 62 (1): 12-5, 2015. [PUBMED Abstract]

Aspectos generales de las opciones de tratamiento del sarcoma de Ewing

Es importante que los pacientes sean evaluados por especialistas en las disciplinas correspondientes (por ejemplo, radiólogos, quimioterapeutas, patólogos, oncólogos especializados en cirugía u ortopedia, y radioncólogos) tan pronto como sea posible.
Se deben obtener estudios de imaginología adecuados del sitio antes de la biopsia. Para asegurar que la incisión se realice en un lugar adecuado, el cirujano u oncólogo ortopedista que llevará a cabo la cirugía definitiva participa en la decisión sobre la ubicación de la incisión para la biopsia. Esto es de particular importancia, si se considera que la lesión se puede extirpar totalmente, o si se puede intentar realizar un procedimiento para salvar el miembro. Con tanta frecuencia como sea posible, la biopsia debe proceder del tejido blando para evitar el aumento del riesgo de fractura.[1] Se debe consultar con el patólogo antes de la biopsia o la cirugía para asegurar que la incisión no comprometa el campo de la radiación y que se extraigan muestras suficientes de tejido. Toda vez que sea posible, es importante obtener tejido fresco para los estudios citogenéticos y de patología molecular. Una segunda opción es realizar una biopsia con aguja en la medida en que se obtenga tejido adecuado para las pruebas de biología molecular y citogenética.[2]
En el Cuadro 3 se describen las opciones de tratamiento del sarcoma de Ewing localizado, metastásico y recidivante.
Cuadro 3. Opciones de tratamiento estándar para el sarcoma de Ewing
Grupo de tratamientoOpciones de tratamiento estándar
Sarcoma de Ewing localizadoQuimioterapia
Medidas de control local:
 Cirugía
 Radioterapia
 Quimioterapia de dosis altas y rescate autógeno de células madre
Sarcoma de Ewing metastásicoQuimioterapia
Cirugía
Radioterapia
Sarcoma de Ewing recidivanteQuimioterapia (no se considera un tratamiento estándar)
Radioterapia (no se considera un tratamiento estándar)
Quimioterapia de dosis altas con apoyo de células madre (no se considera un tratamiento estándar)
Otras terapias (no se consideran tratamientos estándar)
Para el tratamiento exitoso del sarcoma de Ewing es indispensable la quimioterapia sistémica [3-9] junto con cirugía o radioterapia para el control local del tumor.[10-14] En general, los pacientes reciben quimioterapia antes de que se pongan en práctica medidas de control local. En los pacientes sometidos a cirugía, se consideran los márgenes quirúrgicos y la respuesta histológica para planificar el tratamiento posoperatorio. Los pacientes con enfermedad metastásica presentan a menudo una buena reacción inicial a la quimioterapia preoperatoria; sin embargo, en la mayoría de los casos, la enfermedad solo se controla parcialmente o recidiva después.[15-19] Los pacientes cuyo sitio único de metástasis es el pulmón tienen mejor pronóstico que aquellos con metástasis óseas o en la médula ósea. Puede ser un aspecto importante el control local adecuado de los sitios metastásicos; en particular, las metástasis óseas.[20]

Quimioterapia para el sarcoma de Ewing

La quimioterapia multifarmacológica para el sarcoma de Ewing siempre incluye vincristina, doxorrubicina, ifosfamida y etopósido. En la mayoría de los protocolos, también se usa ciclofosfamida y en algunos también se incorpora dactinomicina. La forma de administración y la intensidad de la dosis de la ciclofosfamida entre ciclos difieren de forma marcada entre protocolos. En un ensayo del European Intergroup Cooperative Ewing Sarcoma (EICESS), se indicó que 1,2 g de ciclofosfamida produjeron una supervivencia sin complicaciones (SSC) similar a 6 g de ifosfamida en pacientes con enfermedad de riego bajo, y se identificó una tendencia hacia una mejor SSC para pacientes de sarcoma de Ewing localizado y enfermedad de riesgo alto cuando el tratamiento incluyó etopósido (GER-GPOH-EICESS-92 [NCT00002516]).[21][Grado de comprobación: 1iiA]
En los protocolos de los Estados Unidos, por lo general se alternan ciclos de vincristina, ciclofosfamida y doxorrubicina con ciclos de ifosfamida/etopósido,[7] mientras que, en los protocolos europeos, se suelen combinar vincristina, doxorrubicina y un alquilante con etopósido o sin este, en un solo ciclo de tratamiento.[9] La duración de la quimioterapia primaria varía entre 6 meses y cerca de 1 año.
Datos probatorios (quimioterapia):
  1. Un consorcio internacional de países europeos condujo el ensayo EURO-EWING-INTERGROUP-EE99 (NCT00020566) entre 2000 y 2010.[22][Grado de comprobación: 1iiA] Todos los pacientes recibieron terapia de inducción con seis ciclos de vincristina, ifosfamida, doxorrubicina y etopósido (VIDE), seguido de control local y, luego, un ciclo de vincristina, dactinomicina e ifosfamida (VAI). Los pacientes que se clasificaron como de riesgo estándar se trataron con radioterapia sola como tratamiento local si presentaban enfermedad localizada y una buena reacción histológica a la terapia, o tenían tumores localizados de menos de 200 ml de volumen en el momento de la presentación inicial. Los pacientes de riesgo estándar (n = 856) se asignaron al azar para recibir terapia de mantenimiento con siete ciclos de vincristina, dactinomicina y ciclofosfamida (VAC) o VAI.
    • No hubo una diferencia significativa en la SSC o la supervivencia general (SG) entre el grupo de VAC y el grupo de VAI.
    • La SSC a 3 años para esta población de riesgo bajo fue de 77 %.
    • La toxicidad renal aguda fue más baja en el grupo de VAC que en el de VAI, pero el desenlace a largo plazo del funcionamiento renal y los análisis de fertilidad aún están pendientes.
    • Es difícil comparar este resultado con el de otras series grandes porque en la población del estudio se excluyó a los pacientes con reacción precaria a la terapia inicial o aquellos con tumores de más de 200 ml de volumen que recibieron la terapia de control local con radioterapia sola. Todas las otras series publicadas notifican resultados de todos los pacientes sin metástasis clínicamente detectables en el cuadro clínico inicial; por lo tanto, en estas otras series, se incluyeron pacientes con respuesta precaria y tumores primarios más grandes tratados con radioterapia sola, los cuales se excluyeron del estudio EURO-Ewing-INTERGRUPO-EE99.
  2. En un estudio del Children’s Oncology Group (COG) (COG-AEWS0031 [NCT00006734]), los pacientes sin metástasis se asignaron al azar para recibir ciclos de ciclofosfamida, doxorrubicina y vincristina alternados con ciclos de ifosfamida y etopósido en intervalos de 2 o 3 semanas.[23]
    • La administración de ciclos de ciclofosfamida, doxorrubicina y vincristina alternados con ciclos de ifosfamida y etopósido en intervalos de 2 semanas, produjo una SSC superior (SSC a 5 años, 73 %) que la administración de ciclos alternados en intervalos de 3 semanas (SSC a 5 años, 65 %).
  3. El Brazilian Cooperative Study Group llevó a cabo un ensayo multinstitucional en el que se incorporó carboplatino en un régimen intensivo adaptado al riesgo administrado a 175 niños con sarcoma de Ewing localizado o metastásico.[24][Grado de comprobación: 2Dii]
    • Los investigadores encontraron un aumento importante de toxicidad sin una mejora del resultado con la adición de carboplatino.
  4. El COG llevó a cabo un estudio piloto de adición de ciclos de ciclofosfamida y topotecán a los ciclos de ciclofosfamida/doxorrubicina/vincristina e ifosfamida/etopósido administrados en un programa de intervalos cortos (intervalos de 2 semanas en lugar de 3 semanas).[25][Grado de comprobación: 2Di]
    • El tratamiento se toleró bien y la SSC a 5 años de 35 pacientes fue de 80 %. Este estudio piloto se convirtió en el grupo experimental del COG-AEWS1031 (NCT01231906).

Control local (cirugía y radioterapia) del sarcoma de Ewing

En los enfoques de tratamiento para el sarcoma de Ewing, se realizan reajustes de la intensidad de la terapia con el fin de aumentar al máximo el control local mientras se reduce al mínimo la morbilidad.
La cirugía es la forma de control local más comúnmente utilizada.[26] La radioterapia es otra modalidad efectiva para lograr el control local en casos en los que la morbilidad funcional que puede producir la cirugía se considera demasiado alta según los cirujanos oncólogos con experiencia. Sin embargo, en el caso del esqueleto inmaduro, la radioterapia puede causar posteriormente deformidades que a veces son más mórbidas que las causadas por una cirugía. Cuando la resección quirúrgica completa no permite obtener márgenes patológicamente negativos, se indica radioterapia posoperatoria. Es necesario un planteamiento multidisciplinario entre el radioncólogo experimentado y el cirujano para determinar las mejores opciones de tratamiento para el control local de un caso determinado. Para algunas lesiones con resecabilidad limítrofe, se puede utilizar un enfoque combinado de radioterapia preoperatoria seguida de resección.
No hay ensayos aleatorizados en los que se compare directamente la cirugía con la radioterapia; sus funciones relativas siguen siendo polémicas. Aunque en series retrospectivas institucionales se indica control local y supervivencia superiores de la cirugía que de la radioterapia, la mayoría de estos estudios se ven comprometidos por un sesgo en la selección. En un análisis en el que se utilizó un puntaje de predisposición para ajustar las características clínicas que pueden influir en la preferencia por cirugía sola, radiación sola o cirugía combinada con radiación, se demostró que se logra una SSC similar con cada modalidad de tratamiento local luego del ajuste por predisposición.[26] Los datos de pacientes con sarcoma de Ewing pélvico primario de un ensayo intergrupal norteamericano mostraron que no hay diferencia en el control local o la supervivencia con base en la modalidad de control local (cirugía sola, radiación o cirugía con radiación).[27]
Para los pacientes que se someten a resección macroscópica completa y que tienen enfermedad residual microscópica, se indica el uso de dosis completas de radioterapia (50,4 Gy).[13,28]
Datos probatorios (radioterapia posoperatoria):
  1. Los investigadores del St. Jude Children’s Research Hospital informaron sobre 39 pacientes de sarcoma de Ewing localizado que recibieron tanto cirugía como radiación.[13]
    • El fracaso local en los pacientes con márgenes positivos fue de 17 % y la SG de 71 %. El fracaso local en los pacientes con márgenes negativos fue de 5 % y la SG fue de 94 %.
  2. En un estudio retrospectivo italiano numeroso, 45 Gy de radioterapia adyuvante para pacientes con márgenes inadecuados no pareció mejorar el control local ni la supervivencia sin enfermedad (SSE).[14] Estos investigadores concluyeron que para los pacientes en los que se anticipa que la cirugía será subóptima se debe sopesar la radioterapia definitiva o recibir una dosis completa de radioterapia.
  3. En el estudio EURO-EWING-INTERGROUP-EE99 (NCT00020566) se notificaron los desenlaces de 599 pacientes que presentaron al inicio enfermedad localizada y se sometieron a resección quirúrgica después de la quimioterapia inicial con por lo menos 90 % de necrosis del tumor primario.[28][Grado de comprobación: 3iiDi] En el protocolo se recomendó la radioterapia posoperatoria para los pacientes con márgenes quirúrgicos inadecuados, tumores primarios vertebrales o tumores torácicos con derrame pleural, pero la decisión de usar la radioterapia posoperatoria la tomó el investigador de cada institución.
    • Los pacientes sometidos a radioterapia posoperatoria (n = 142) presentaron menor riesgo de fracaso que los pacientes que no recibieron radioterapia posoperatoria, aún después del control de los factores de pronóstico conocidos, como la edad, el sexo, el sitio del tumor, la respuesta clínica, la calidad de la resección y la necrosis histológica. La mayoría de las mejoras se observaron en la disminución del riesgo de recidiva local. La mejoría fue más alta para los pacientes con tumores grandes (>200 ml) y quienes se consideró que tenían 100 % de necrosis en comparación con los pacientes para los que se calculó una necrosis de entre 90 a 100 %.
    • Hubo una interacción clara entre la terapia sistémica y las modalidades de control local para el control local y la SSE. El régimen de inducción empleado en el estudio EURO-EWING-INTERGROUP-EE99 es menos intenso que el régimen de inducción que se usa en los protocolos contemporáneos del COG, por lo tanto, no es apropiado extrapolar los resultados del estudio EURO-EWING-INTERGROUP-EE99 a otros regímenes de quimioterapia sistémica.
En resumen, se escoge la cirugía como tratamiento local definitivo para los pacientes aptos, pero la radioterapia es apropiada para pacientes con enfermedad irresecable o aquellos que experimentarían un compromiso funcional con la cirugía definitiva. Es necesario medir la posibilidad de deterioro funcional en contraste con la posibilidad de segundos tumores en el campo de radiación. Se debe considerar la radioterapia adyuvante para los pacientes con enfermedad residual microscópica o márgenes inadecuados.
Cuando la evaluación preoperatoria indicó una probabilidad alta de que los márgenes quirúrgicos serán estrechos o positivos, la radioterapia preoperatoria logra la reducción tumoral y permite un resecado quirúrgico con márgenes limpios.[29]

Quimioterapia de dosis altas con apoyo de células madre para el sarcoma de Ewing

Para los pacientes con riesgo alto de recaída sometidos a tratamientos convencionales, ciertos investigadores utilizaron quimioterapia de dosis altas con trasplante de células madre hematopoyéticas (TCMH) como tratamiento de consolidación, con el fin de mejorar el desenlace.[19,30-42]
Datos probatorios (terapia de dosis altas con apoyo de células madre):
  1. En un estudio prospectivo, los pacientes con metástasis óseas o de médula ósea en el momento del diagnóstico se trataron con quimioterapia intensiva, cirugía o radiación, y TCMH si se lograba una buena respuesta inicial.[35]
    • El estudio no mostró beneficio alguno del TCMH cuando se lo comparó con controles históricos.
  2. En una revisión retrospectiva para la que se usaron registros internacionales de trasplante de médula ósea, se compararon los resultados después del tratamiento con acondicionamiento de intensidad reducida y con acondicionamiento de intensidad alta, seguido de TCM alogénico en pacientes con sarcoma de Ewing con riesgo alto de recaída.[43][Grado de comprobación: 3iiiA]
    • No hubo diferencia en los resultados y los autores concluyeron que esto indicó la ausencia de efecto de implante contra tumor clínicamente importante contra las células tumorales del sarcoma de Ewing con los abordajes actuales.
  3. Se publicaron múltiples estudios pequeños que notifican un beneficio del TCMH, pero cuya interpretación es difícil porque solo se considera un TCMH para los pacientes con una buena reacción inicial a la quimioterapia estándar.
  4. En el ensayo prospectivo aleatorizado EURO-EWING-INTERGROUP-EE99 (NCT00020566), se investigó la función de la terapia con dosis altas de busulfano y melfalán (BuMel) seguida de rescate de células madre para los siguientes dos grupos:[44]
    1. Pacientes que presentan metástasis pulmonares aisladas (R2pulm).
    2. Pacientes con tumores localizados que responden mal a la quimioterapia inicial (<90 % de necrosis) o que tienen tumores de gran tamaño (>200 ml) (R2loc).
      En ambos grupos de estudio se presentó la posibilidad de sesgo de selección de pacientes aptos para participar que aceptaron someterse a la aleatorización, lo que limita la generalización de los resultados.
      • En el grupo de pacientes R2pulm, no se encontraron diferencias en la SSC a 3 años (55,7 % con BuMel vs. 50,3 % con quimioterapia continuada y radiación pulmonar completa; P = 0,21).
      • En el grupo de pacientes R2loc, la SSC a 3 años fue más alta para BuMel en comparación con la quimioterapia continuada (66,9 vs. 53,1 %; P = 0,019).
    VIDE fue el régimen de inducción que se utilizó en el ensayo EURO-EWING-INTERGROUP-EE99. En este régimen, la intensidad de dosificación es menor que en el régimen de los estudios del COG. Esto se puede inferir de la intensidad de dosificación prevista para los fármacos usados durante el periodo de 21 semanas previo a la aleatorización en el estudio EURO-EWING-INTERGROUP-EE99 (consultar el Cuadro 4). La menor intensidad de dosificación también se puede inferir de los resultados del estudio EURO-EWING-INTERGROUP-EE99 para los pacientes clasificados en el estrato de enfermedad localizada. Los siguientes son los resultados de este estudio:
    • Los pacientes del estrato de menor riesgo, R1, eran pacientes con tumores primarios pequeños de volumen inferior a 200 ml. Además, los pacientes que presentaron una respuesta precaria durante los primeros 6 ciclos de VIDE (de acuerdo con la evaluación patológica o radiológica), pasaron del estrato R1 al R2. Esto llevó a que en el estrato R1 se incluyera a los pacientes con tumores primarios más pequeños y respuesta favorable a la terapia inicial. La probabilidad de SSC a 3 años para este grupo de riesgo bajo fue de 76 %.[22]
    • La probabilidad de SSC a 5 años fue de 73 % para todos los pacientes con sarcoma de Ewing que recibieron tratamiento en el ensayo COG-AEWS1031 (NCT01231906), incluso los pacientes con tumores primarios grandes y los que presentaron respuesta precaria a la terapia inicial.[23]
    La observación de que la terapia de dosis altas con rescate autógeno de células madre mejora los desenlaces de pacientes con respuesta precaria a la terapia inicial del estudio EURO-EWING-INTERGROUP-EE99 debe interpretar en este contexto. La ventaja de la terapia de dosis altas como consolidación para pacientes con respuesta precaria al tratamiento inicial con un régimen menos intenso no se puede extrapolar a la población de pacientes que reciben un tratamiento más intensivo como terapia inicial.
    Cuadro 4. Comparación de la intensidad de dosificación del ensayo EURO-EWING-INTERGROUP-EE99 y la reducción de intervalo de dosis del COG
    Fármaco quimioterapéuticoIntensidad de dosificación prescrita (mg/semana)
     EURO-EWING-INTERGROUP-EE99Reducción de intervalo de dosificación de COG
    COG = Children's Oncology Group.
    Vincristina0,5 mg/m20,43 mg/m2
    Doxorrubicina17,1 mg/m221,4 mg/m2
    Ifosfamida3000 mg/m22150 mg/m2
    Ciclofosfamida0343 mg/m2

Sarcoma de Ewing extraóseo

En múltiples análisis se evaluaron los hallazgos diagnósticos, el tratamiento y los desenlaces obtenidos en pacientes con lesiones óseas primarias en los siguientes sitios:
  • Pelvis.[45-47]
  • Fémur.[48,49]
  • Húmero.[50,51]
  • Manos y pies.[52,53]
  • Pared torácica o costillas.[54-57]
  • Cabeza y cuello.[58]
  • Columna vertebral o sacro.[59-62]
Desde el punto de vista biológico, el sarcoma de Ewing extraóseo es similar al sarcoma de Ewing que se origina en el hueso. Tradicionalmente, la mayoría de niños y adultos jóvenes con sarcoma de Ewing extraóseo se trataban con protocolos diseñados para el tratamiento del rabdomiosarcoma. Esto es importante porque muchos de los regímenes de tratamiento para el rabdomiosarcoma no incluyen una antraciclina, que es un componente de suma importancia en los regímenes actuales de tratamiento del sarcoma de Ewing. En la actualidad, los pacientes con sarcoma de Ewing extraóseo son aptos para participar en estudios que incluyen el sarcoma de Ewing óseo.
Datos probatorios (tratamiento del sarcoma de Ewing extraóseo):
  1. De 1987 a 2004, 111 pacientes con sarcoma de Ewing extraóseo sin metástasis se inscribieron en los protocolos RMS-88 y RMS-96.[63] Los pacientes con resección tumoral inicial completa recibieron ifosfamida, vincristina y actinomicina (IVA), mientras que los pacientes con tumores residuales recibieron IVA más doxorrubicina (VAIA) o IVA más carboplatino, epirrubicina y etopósido (CEVAIE). Setenta y seis por ciento de los pacientes recibieron radiación.
    • La SSC a 5 años fue de 59 % y la SG fue de 69 %.
    • En un análisis multivariante, los factores independientes de pronóstico adverso incluyeron tumor primario axial, tamaño del tumor mayor de 10 cm, según la clasificación de Intergroup Rhabdomyosarcoma Studies Group III, y ausencia de radioterapia.
  2. En estudios realizados por el German Pediatric Oncology Group, participaron 236 pacientes de sarcoma de Ewing extraóseo.[64] La mediana de edad en el momento del diagnóstico fue de 15 años y 133 pacientes eran varones. El sitio primario de tumor estuvo en las extremidades (n = 62) o en un sitio central (n = 174). De los 236 pacientes, 60 presentaban metástasis en el momento del diagnóstico. La quimioterapia contenía vincristina, doxorrubicina, ciclofosfamida y actinomicina (VACA), CEVAIE o VIDE.
    • La SSC a 5 años fue de 49 % y la SG fue de 60 %.
    • La supervivencia a 5 años fue de 70 % para los pacientes con enfermedad localizada y de 33 % para los pacientes con metástasis en el momento del diagnóstico.
    • La SG de pacientes con enfermedad localizada no pareció relacionarse con el sitio o el tamaño del tumor.
  3. En un estudio retrospectivo francés, se trató a pacientes de sarcoma de Ewing extraóseo con un régimen para rabdomiosarcoma (sin antraciclinas) o un régimen para sarcoma de Ewing (con antraciclinas).[65,66]
    • Los pacientes que recibieron el régimen con antraciclina tuvieron una SSC y SG significativamente mejores que aquellos que no recibieron antraciclinas.
  4. En dos ensayos de sarcoma de Ewing realizados en América del Norte, se incluyeron pacientes de sarcoma de Ewing extraóseo.[23,67] En una revisión de los estudios POG-9354 (INT-0154) y EWS0031 (NCT00006734), se identificó a 213 pacientes con sarcoma de Ewing extraóseo y 826 pacientes con sarcoma de Ewing óseo.[68][Grado de comprobación: 3iiDi]
    • El cociente de riesgos instantáneos del sarcoma Ewing extraóseo fue más alto (0,62) y el sarcoma de Ewing extraóseo fue un factor de pronóstico favorable, independiente de la edad, la raza y el sitio primario.
El sarcoma de Ewing cutáneo es un tumor del tejido blando en la piel o el tejido subcutáneo que parece comportarse como un tumor menos maligno que el sarcoma de Ewing óseo primario o el sarcoma de Ewing de tejido blando. Los tumores se pueden presentar en todo el cuerpo, aunque las extremidades son los sitios más comunes, y casi siempre están localizados.
Datos probatorios (tratamiento del sarcoma de Ewing cutáneo):
  1. En una revisión de 78 casos notificados, algunos sin confirmación molecular, la SG fue de 91 %. El control local adecuado, definido como una resección completa con márgenes negativos, la radioterapia o una combinación, redujo significativamente la incidencia de recaída. Para estos pacientes, se suele usar quimioterapia estándar para un sarcoma de Ewing porque no hay datos que indiquen cuáles son los pacientes que se podrían tratar de forma menos radical.[69,70]
  2. En una serie con 56 pacientes de sarcoma de Ewing cutáneo o subcutáneo, se confirmó el excelente resultado de la terapia sistémica estándar y el control local. El intento de una cirugía definitiva primaria a menudo produjo la necesidad de radioterapia o más cirugía que comprometería la función; ello apoyó la recomendación de la biopsia sola como cirugía inicial, en lugar de una resección inicial no planificada.[71][Grado de comprobación: 3iiD]

Consideraciones especiales acerca del tratamiento de los niños con cáncer

Por fortuna, el cáncer es poco frecuente en niños y adolescentes, aunque desde 1975 se ha observado un aumento gradual de la incidencia general de cáncer infantil.[72]Los niños y adolescentes con cáncer se deben derivar a centros médicos que cuentan con un equipo multidisciplinario de especialistas en cáncer con experiencia en el tratamiento de los cánceres que se presentan en la niñez y la adolescencia. Este enfoque multidisciplinario incorpora la pericia de los siguientes profesionales de la salud y otros para asegurar que los niños reciban el tratamiento, los cuidados de apoyo y la rehabilitación que les permita lograr una supervivencia y calidad de vida óptimas:
  • Médicos de atención primaria.
  • Cirujanos pediatras.
  • Radioncólogos.
  • Oncólogos y hematólogos especializados en pediatría.
  • Especialistas en rehabilitación.
  • Enfermeros especializados en pediatría.
  • Trabajadores sociales.
  • Especialistas en vida infantil.
  • Psicólogos.
(Para obtener información específica sobre los cuidados médicos de apoyo para los niños y adolescentes con cáncer, consultar los sumarios del PDQ Cuidados médicos de apoyo).
La American Academy of Pediatrics estableció pautas para los centros de oncología pediátrica y su función en el tratamiento de los pacientes con cáncer infantil.[73] En estos centros de oncología pediátrica, se dispone de ensayos clínicos para la mayoría de los tipos de cáncer que se presentan en niños y adolescentes, y se ofrece la oportunidad de participar a la mayoría de los pacientes y sus familias. Los ensayos clínicos para adolescentes y niños con cáncer, por lo general, se diseñan con el fin de comparar un tratamiento presuntamente mejor con el tratamiento que se acepta en el presente como estándar. La mayoría de los avances logrados en la identificación de tratamientos curativos para los cánceres infantiles se alcanzaron mediante ensayos clínicos. Se dispone de información sobre los ensayos clínicos en curso en el portal de Internet del NCI.
Los niños y adolescentes sobrevivientes de cáncer necesitan un seguimiento minucioso, ya que los efectos secundarios del tratamiento de cáncer pueden persistir o presentarse meses o años después de este. (Para obtener información específica sobre la incidencia, el tipo y la vigilancia de los efectos tardíos en los niños y adolescentes sobrevivientes de cáncer, consultar el sumario del PDQ Efectos tardíos del tratamiento anticanceroso en la niñez).
Bibliografía
  1. Fuchs B, Valenzuela RG, Sim FH: Pathologic fracture as a complication in the treatment of Ewing's sarcoma. Clin Orthop (415): 25-30, 2003. [PUBMED Abstract]
  2. Hoffer FA, Gianturco LE, Fletcher JA, et al.: Percutaneous biopsy of peripheral primitive neuroectodermal tumors and Ewing's sarcomas for cytogenetic analysis. AJR Am J Roentgenol 162 (5): 1141-2, 1994. [PUBMED Abstract]
  3. Craft A, Cotterill S, Malcolm A, et al.: Ifosfamide-containing chemotherapy in Ewing's sarcoma: The Second United Kingdom Children's Cancer Study Group and the Medical Research Council Ewing's Tumor Study. J Clin Oncol 16 (11): 3628-33, 1998. [PUBMED Abstract]
  4. Shankar AG, Pinkerton CR, Atra A, et al.: Local therapy and other factors influencing site of relapse in patients with localised Ewing's sarcoma. United Kingdom Children's Cancer Study Group (UKCCSG). Eur J Cancer 35 (12): 1698-704, 1999. [PUBMED Abstract]
  5. Nilbert M, Saeter G, Elomaa I, et al.: Ewing's sarcoma treatment in Scandinavia 1984-1990--ten-year results of the Scandinavian Sarcoma Group Protocol SSGIV. Acta Oncol 37 (4): 375-8, 1998. [PUBMED Abstract]
  6. Ferrari S, Mercuri M, Rosito P, et al.: Ifosfamide and actinomycin-D, added in the induction phase to vincristine, cyclophosphamide and doxorubicin, improve histologic response and prognosis in patients with non metastatic Ewing's sarcoma of the extremity. J Chemother 10 (6): 484-91, 1998. [PUBMED Abstract]
  7. Grier HE, Krailo MD, Tarbell NJ, et al.: Addition of ifosfamide and etoposide to standard chemotherapy for Ewing's sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 348 (8): 694-701, 2003. [PUBMED Abstract]
  8. Thacker MM, Temple HT, Scully SP: Current treatment for Ewing's sarcoma. Expert Rev Anticancer Ther 5 (2): 319-31, 2005. [PUBMED Abstract]
  9. Juergens C, Weston C, Lewis I, et al.: Safety assessment of intensive induction with vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) in the treatment of Ewing tumors in the EURO-E.W.I.N.G. 99 clinical trial. Pediatr Blood Cancer 47 (1): 22-9, 2006. [PUBMED Abstract]
  10. Dunst J, Schuck A: Role of radiotherapy in Ewing tumors. Pediatr Blood Cancer 42 (5): 465-70, 2004. [PUBMED Abstract]
  11. Donaldson SS: Ewing sarcoma: radiation dose and target volume. Pediatr Blood Cancer 42 (5): 471-6, 2004. [PUBMED Abstract]
  12. Bacci G, Ferrari S, Longhi A, et al.: Role of surgery in local treatment of Ewing's sarcoma of the extremities in patients undergoing adjuvant and neoadjuvant chemotherapy. Oncol Rep 11 (1): 111-20, 2004. [PUBMED Abstract]
  13. Krasin MJ, Rodriguez-Galindo C, Davidoff AM, et al.: Efficacy of combined surgery and irradiation for localized Ewings sarcoma family of tumors. Pediatr Blood Cancer 43 (3): 229-36, 2004. [PUBMED Abstract]
  14. Bacci G, Longhi A, Briccoli A, et al.: The role of surgical margins in treatment of Ewing's sarcoma family tumors: experience of a single institution with 512 patients treated with adjuvant and neoadjuvant chemotherapy. Int J Radiat Oncol Biol Phys 65 (3): 766-72, 2006. [PUBMED Abstract]
  15. Paulussen M, Ahrens S, Burdach S, et al.: Primary metastatic (stage IV) Ewing tumor: survival analysis of 171 patients from the EICESS studies. European Intergroup Cooperative Ewing Sarcoma Studies. Ann Oncol 9 (3): 275-81, 1998. [PUBMED Abstract]
  16. Pinkerton CR, Bataillard A, Guillo S, et al.: Treatment strategies for metastatic Ewing's sarcoma. Eur J Cancer 37 (11): 1338-44, 2001. [PUBMED Abstract]
  17. Miser JS, Krailo M, Meyers P, et al.: Metastatic Ewing's sarcoma(es) and primitive neuroectodermal tumor (PNET) of bone: failure of new regimens to improve outcome. [Abstract] Proceedings of the American Society of Clinical Oncology 15: A-1472, 467, 1996.
  18. Bernstein ML, Devidas M, Lafreniere D, et al.: Intensive therapy with growth factor support for patients with Ewing tumor metastatic at diagnosis: Pediatric Oncology Group/Children's Cancer Group Phase II Study 9457--a report from the Children's Oncology Group. J Clin Oncol 24 (1): 152-9, 2006. [PUBMED Abstract]
  19. Ladenstein R, Pötschger U, Le Deley MC, et al.: Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial. J Clin Oncol 28 (20): 3284-91, 2010. [PUBMED Abstract]
  20. Haeusler J, Ranft A, Boelling T, et al.: The value of local treatment in patients with primary, disseminated, multifocal Ewing sarcoma (PDMES). Cancer 116 (2): 443-50, 2010. [PUBMED Abstract]
  21. Paulussen M, Craft AW, Lewis I, et al.: Results of the EICESS-92 Study: two randomized trials of Ewing's sarcoma treatment--cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. J Clin Oncol 26 (27): 4385-93, 2008. [PUBMED Abstract]
  22. Le Deley MC, Paulussen M, Lewis I, et al.: Cyclophosphamide compared with ifosfamide in consolidation treatment of standard-risk Ewing sarcoma: results of the randomized noninferiority Euro-EWING99-R1 trial. J Clin Oncol 32 (23): 2440-8, 2014. [PUBMED Abstract]
  23. Womer RB, West DC, Krailo MD, et al.: Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children's Oncology Group. J Clin Oncol 30 (33): 4148-54, 2012. [PUBMED Abstract]
  24. Brunetto AL, Castillo LA, Petrilli AS, et al.: Carboplatin in the treatment of Ewing sarcoma: Results of the first Brazilian collaborative study group for Ewing sarcoma family tumors-EWING1. Pediatr Blood Cancer 62 (10): 1747-53, 2015. [PUBMED Abstract]
  25. Mascarenhas L, Felgenhauer JL, Bond MC, et al.: Pilot Study of Adding Vincristine, Topotecan, and Cyclophosphamide to Interval-Compressed Chemotherapy in Newly Diagnosed Patients With Localized Ewing Sarcoma: A Report From the Children's Oncology Group. Pediatr Blood Cancer 63 (3): 493-8, 2016. [PUBMED Abstract]
  26. DuBois SG, Krailo MD, Gebhardt MC, et al.: Comparative evaluation of local control strategies in localized Ewing sarcoma of bone: a report from the Children's Oncology Group. Cancer 121 (3): 467-75, 2015. [PUBMED Abstract]
  27. Yock TI, Krailo M, Fryer CJ, et al.: Local control in pelvic Ewing sarcoma: analysis from INT-0091--a report from the Children's Oncology Group. J Clin Oncol 24 (24): 3838-43, 2006. [PUBMED Abstract]
  28. Foulon S, Brennan B, Gaspar N, et al.: Can postoperative radiotherapy be omitted in localised standard-risk Ewing sarcoma? An observational study of the Euro-E.W.I.N.G group. Eur J Cancer 61: 128-36, 2016. [PUBMED Abstract]
  29. Wagner TD, Kobayashi W, Dean S, et al.: Combination short-course preoperative irradiation, surgical resection, and reduced-field high-dose postoperative irradiation in the treatment of tumors involving the bone. Int J Radiat Oncol Biol Phys 73 (1): 259-66, 2009. [PUBMED Abstract]
  30. Kushner BH, Meyers PA: How effective is dose-intensive/myeloablative therapy against Ewing's sarcoma/primitive neuroectodermal tumor metastatic to bone or bone marrow? The Memorial Sloan-Kettering experience and a literature review. J Clin Oncol 19 (3): 870-80, 2001. [PUBMED Abstract]
  31. Marina N, Meyers PA: High-dose therapy and stem-cell rescue for Ewing's family of tumors in second remission. J Clin Oncol 23 (19): 4262-4, 2005. [PUBMED Abstract]
  32. Burdach S: Treatment of advanced Ewing tumors by combined radiochemotherapy and engineered cellular transplants. Pediatr Transplant 8 (Suppl 5): 67-82, 2004. [PUBMED Abstract]
  33. McTiernan A, Driver D, Michelagnoli MP, et al.: High dose chemotherapy with bone marrow or peripheral stem cell rescue is an effective treatment option for patients with relapsed or progressive Ewing's sarcoma family of tumours. Ann Oncol 17 (8): 1301-5, 2006. [PUBMED Abstract]
  34. Burdach S, Meyer-Bahlburg A, Laws HJ, et al.: High-dose therapy for patients with primary multifocal and early relapsed Ewing's tumors: results of two consecutive regimens assessing the role of total-body irradiation. J Clin Oncol 21 (16): 3072-8, 2003. [PUBMED Abstract]
  35. Meyers PA, Krailo MD, Ladanyi M, et al.: High-dose melphalan, etoposide, total-body irradiation, and autologous stem-cell reconstitution as consolidation therapy for high-risk Ewing's sarcoma does not improve prognosis. J Clin Oncol 19 (11): 2812-20, 2001. [PUBMED Abstract]
  36. Oberlin O, Rey A, Desfachelles AS, et al.: Impact of high-dose busulfan plus melphalan as consolidation in metastatic Ewing tumors: a study by the Société Française des Cancers de l'Enfant. J Clin Oncol 24 (24): 3997-4002, 2006. [PUBMED Abstract]
  37. Hawkins D, Barnett T, Bensinger W, et al.: Busulfan, melphalan, and thiotepa with or without total marrow irradiation with hematopoietic stem cell rescue for poor-risk Ewing-Sarcoma-Family tumors. Med Pediatr Oncol 34 (5): 328-37, 2000. [PUBMED Abstract]
  38. Rosenthal J, Bolotin E, Shakhnovits M, et al.: High-dose therapy with hematopoietic stem cell rescue in patients with poor prognosis Ewing family tumors. Bone Marrow Transplant 42 (5): 311-8, 2008. [PUBMED Abstract]
  39. Burdach S, Thiel U, Schöniger M, et al.: Total body MRI-governed involved compartment irradiation combined with high-dose chemotherapy and stem cell rescue improves long-term survival in Ewing tumor patients with multiple primary bone metastases. Bone Marrow Transplant 45 (3): 483-9, 2010. [PUBMED Abstract]
  40. Gaspar N, Rey A, Bérard PM, et al.: Risk adapted chemotherapy for localised Ewing's sarcoma of bone: the French EW93 study. Eur J Cancer 48 (9): 1376-85, 2012. [PUBMED Abstract]
  41. Drabko K, Raciborska A, Bilska K, et al.: Consolidation of first-line therapy with busulphan and melphalan, and autologous stem cell rescue in children with Ewing's sarcoma. Bone Marrow Transplant 47 (12): 1530-4, 2012. [PUBMED Abstract]
  42. Loschi S, Dufour C, Oberlin O, et al.: Tandem high-dose chemotherapy strategy as first-line treatment of primary disseminated multifocal Ewing sarcomas in children, adolescents and young adults. Bone Marrow Transplant 50 (8): 1083-8, 2015. [PUBMED Abstract]
  43. Thiel U, Wawer A, Wolf P, et al.: No improvement of survival with reduced- versus high-intensity conditioning for allogeneic stem cell transplants in Ewing tumor patients. Ann Oncol 22 (7): 1614-21, 2011. [PUBMED Abstract]
  44. Whelan J, Le Deley MC, Dirksen U, et al.: High-Dose Chemotherapy and Blood Autologous Stem-Cell Rescue Compared With Standard Chemotherapy in Localized High-Risk Ewing Sarcoma: Results of Euro-E.W.I.N.G.99 and Ewing-2008. J Clin Oncol : JCO2018782516, 2018. [PUBMED Abstract]
  45. Hoffmann C, Ahrens S, Dunst J, et al.: Pelvic Ewing sarcoma: a retrospective analysis of 241 cases. Cancer 85 (4): 869-77, 1999. [PUBMED Abstract]
  46. Sucato DJ, Rougraff B, McGrath BE, et al.: Ewing's sarcoma of the pelvis. Long-term survival and functional outcome. Clin Orthop (373): 193-201, 2000. [PUBMED Abstract]
  47. Bacci G, Ferrari S, Mercuri M, et al.: Multimodal therapy for the treatment of nonmetastatic Ewing sarcoma of pelvis. J Pediatr Hematol Oncol 25 (2): 118-24, 2003. [PUBMED Abstract]
  48. Bacci G, Ferrari S, Longhi A, et al.: Local and systemic control in Ewing's sarcoma of the femur treated with chemotherapy, and locally by radiotherapy and/or surgery. J Bone Joint Surg Br 85 (1): 107-14, 2003. [PUBMED Abstract]
  49. Ozaki T, Hillmann A, Hoffmann C, et al.: Ewing's sarcoma of the femur. Prognosis in 69 patients treated by the CESS group. Acta Orthop Scand 68 (1): 20-4, 1997. [PUBMED Abstract]
  50. Ayoub KS, Fiorenza F, Grimer RJ, et al.: Extensible endoprostheses of the humerus after resection of bone tumours. J Bone Joint Surg Br 81 (3): 495-500, 1999. [PUBMED Abstract]
  51. Bacci G, Palmerini E, Staals EL, et al.: Ewing's sarcoma family tumors of the humerus: outcome of patients treated with radiotherapy, surgery or surgery and adjuvant radiotherapy. Radiother Oncol 93 (2): 383-7, 2009. [PUBMED Abstract]
  52. Casadei R, Magnani M, Biagini R, et al.: Prognostic factors in Ewing's sarcoma of the foot. Clin Orthop (420): 230-8, 2004. [PUBMED Abstract]
  53. Anakwenze OA, Parker WL, Wold LE, et al.: Ewing's sarcoma of the hand. J Hand Surg Eur Vol 34 (1): 35-9, 2009. [PUBMED Abstract]
  54. Shamberger RC, Laquaglia MP, Krailo MD, et al.: Ewing sarcoma of the rib: results of an intergroup study with analysis of outcome by timing of resection. J Thorac Cardiovasc Surg 119 (6): 1154-61, 2000. [PUBMED Abstract]
  55. Sirvent N, Kanold J, Levy C, et al.: Non-metastatic Ewing's sarcoma of the ribs: the French Society of Pediatric Oncology Experience. Eur J Cancer 38 (4): 561-7, 2002. [PUBMED Abstract]
  56. Shamberger RC, LaQuaglia MP, Gebhardt MC, et al.: Ewing sarcoma/primitive neuroectodermal tumor of the chest wall: impact of initial versus delayed resection on tumor margins, survival, and use of radiation therapy. Ann Surg 238 (4): 563-7; discussion 567-8, 2003. [PUBMED Abstract]
  57. Schuck A, Ahrens S, Konarzewska A, et al.: Hemithorax irradiation for Ewing tumors of the chest wall. Int J Radiat Oncol Biol Phys 54 (3): 830-8, 2002. [PUBMED Abstract]
  58. Windfuhr JP: Primitive neuroectodermal tumor of the head and neck: incidence, diagnosis, and management. Ann Otol Rhinol Laryngol 113 (7): 533-43, 2004. [PUBMED Abstract]
  59. Venkateswaran L, Rodriguez-Galindo C, Merchant TE, et al.: Primary Ewing tumor of the vertebrae: clinical characteristics, prognostic factors, and outcome. Med Pediatr Oncol 37 (1): 30-5, 2001. [PUBMED Abstract]
  60. Marco RA, Gentry JB, Rhines LD, et al.: Ewing's sarcoma of the mobile spine. Spine 30 (7): 769-73, 2005. [PUBMED Abstract]
  61. Schuck A, Ahrens S, von Schorlemer I, et al.: Radiotherapy in Ewing tumors of the vertebrae: treatment results and local relapse analysis of the CESS 81/86 and EICESS 92 trials. Int J Radiat Oncol Biol Phys 63 (5): 1562-7, 2005. [PUBMED Abstract]
  62. Bacci G, Boriani S, Balladelli A, et al.: Treatment of nonmetastatic Ewing's sarcoma family tumors of the spine and sacrum: the experience from a single institution. Eur Spine J 18 (8): 1091-5, 2009. [PUBMED Abstract]
  63. Spiller M, Bisogno G, Ferrari A, et al.: Prognostic factors in localized extraosseus Ewing family tumors. [Abstract] Pediatr Blood Cancer 46 (10) : A-PD.024, 434, 2006.
  64. Ladenstein R, Pötschger U, Jürgens H, et al.: Comparison of treatment concepts for extraosseus Ewing tumors (EET) within consecutive trials of two GPOH Cooperative Study Groups. [Abstract] Pediatr Blood Cancer 45 (10) : A-P.C.004, 450, 2005.
  65. Castex MP, Rubie H, Stevens MC, et al.: Extraosseous localized ewing tumors: improved outcome with anthracyclines--the French society of pediatric oncology and international society of pediatric oncology. J Clin Oncol 25 (10): 1176-82, 2007. [PUBMED Abstract]
  66. Dantonello TM, Int-Veen C, Harms D, et al.: Cooperative trial CWS-91 for localized soft tissue sarcoma in children, adolescents, and young adults. J Clin Oncol 27 (9): 1446-55, 2009. [PUBMED Abstract]
  67. Granowetter L, Womer R, Devidas M, et al.: Dose-intensified compared with standard chemotherapy for nonmetastatic Ewing sarcoma family of tumors: a Children's Oncology Group Study. J Clin Oncol 27 (15): 2536-41, 2009. [PUBMED Abstract]
  68. Cash T, McIlvaine E, Krailo MD, et al.: Comparison of clinical features and outcomes in patients with extraskeletal versus skeletal localized Ewing sarcoma: A report from the Children's Oncology Group. Pediatr Blood Cancer 63 (10): 1771-9, 2016. [PUBMED Abstract]
  69. Collier AB 3rd, Simpson L, Monteleone P: Cutaneous Ewing sarcoma: report of 2 cases and literature review of presentation, treatment, and outcome of 76 other reported cases. J Pediatr Hematol Oncol 33 (8): 631-4, 2011. [PUBMED Abstract]
  70. Terrier-Lacombe MJ, Guillou L, Chibon F, et al.: Superficial primitive Ewing's sarcoma: a clinicopathologic and molecular cytogenetic analysis of 14 cases. Mod Pathol 22 (1): 87-94, 2009. [PUBMED Abstract]
  71. Di Giannatale A, Frezza AM, Le Deley MC, et al.: Primary cutaneous and subcutaneous Ewing sarcoma. Pediatr Blood Cancer 62 (9): 1555-61, 2015. [PUBMED Abstract]
  72. Smith MA, Altekruse SF, Adamson PC, et al.: Declining childhood and adolescent cancer mortality. Cancer 120 (16): 2497-506, 2014. [PUBMED Abstract]
  73. Corrigan JJ, Feig SA; American Academy of Pediatrics: Guidelines for pediatric cancer centers. Pediatrics 113 (6): 1833-5, 2004. [PUBMED Abstract]

Tratamiento del sarcoma de Ewing localizado

Opciones de tratamiento estándar para el sarcoma de Ewing localizado

Las opciones de tratamiento estándar para el sarcoma de Ewing localizado incluyen los siguientes procedimientos:
Puesto que la mayoría de los pacientes con enfermedad aparentemente localizada en el momento del diagnóstico presentan enfermedad metastásica oculta, se indica quimioterapia multifarmacológica y control local de la enfermedad con cirugía o radioterapia para el tratamiento de todos los pacientes.[1-8] Con los regímenes actuales para el tratamiento del sarcoma de Ewing localizado se logran supervivencia sin complicaciones (SSC) y supervivencia general (SG) a 5 años a partir del diagnóstico de cerca de 70 %.[9]

Quimioterapia

La quimioterapia actual en los Estados Unidos incluye vincristina, doxorrubicina y ciclofosfamida (VDC), alternadas con ifosfamida y etopósido (IE) o VDC/IE.[9]; [10][Grado de comprobación: 1iiA]
Datos probatorios (quimioterapia):
  1. La combinación IE mostró eficacia en el sarcoma de Ewing y, tanto en un ensayo clínico aleatorizado grande como en un ensayo clínico no aleatorizado, se demostró que el resultado mejoró cuando el IE se alternó con VDC.[9,11]
  2. En los Estados Unidos ya no se usa la dactinomicina para el sarcoma de Ewing, pero se continúa usando en los estudios Euro-Ewing.
  3. La utilización de dosis altas de VDC mostró resultados promisorios en un número pequeño de pacientes. En un estudio realizado en una sola institución, 44 pacientes tratados con IE y dosis altas de VDC tuvieron una SSC a 4 años de 82 %.[12]
  4. Sin embargo, en un ensayo intergrupal del Pediatric Oncology Group y el Children's Cancer Group, en el que se comparó un régimen de quimioterapia con alquilantes y dosis intensivas de VDC/IE con dosis estándar del mismo régimen VDC/IE, no se observaron diferencias en los resultados.[13] A diferencia del ensayo de una sola institución, en este ensayo no se mantuvo la intensidad de las dosis de ciclofosfamida durante el transcurso del tratamiento.[12]
En un ensayo del Children's Oncology Group (COG) (COG-AEWS0031 [NCT00006734]), 568 pacientes con sarcoma de Ewing extradural localizado recién diagnosticado se asignaron al azar para recibir quimioterapia (VDC/IE) administrada cada dos semanas (intervalo corto) o cada tres semanas (estándar). Los pacientes asignados al azar al intervalo de tratamiento cada dos semanas presentaron una mejora de la SSC a 5 años (73 vs. 65 %, P = 0,048). No se observó aumento de la toxicidad en el plan de cada dos semanas.[10]

Medidas de control local

El control local se puede lograr mediante cirugía o radioterapia.
Cirugía
La cirugía suele ser el enfoque preferido si la lesión es resecable.[14,15] No se ha probado en ningún ensayo prospectivo aleatorizado la superioridad de la resección para el control local. La aparente superioridad puede representar un sesgo de selección.
  1. En estudios pasados, fue más probable que los tumores más periféricos y pequeños se trataran con cirugía y que los tumores más centrales se trataran con radioterapia.[16]
  2. En un estudio retrospectivo italiano, se observó que la cirugía solo mejoró los resultados en los tumores de las extremidades, aunque el número de pacientes con sarcoma de Ewing del eje central en los que se lograron márgenes adecuados fue pequeño.[8]
  3. En una serie de 39 pacientes tratados en el St. Jude Children’s Research Hospital, que recibieron tanto cirugía como radioterapia, la tasa de fracaso local a 8 años fue de 5 % para los pacientes con márgenes quirúrgicos negativos y de 17 % para aquellos con márgenes positivos.[5]
  4. Los datos de pacientes con sarcoma de Ewing pélvico en un ensayo intergrupal norteamericano no mostraron diferencias en el control local o la supervivencia con base en la modalidad de control (cirugía sola, radioterapia sola o radiación más cirugía).[17]
Los beneficios posibles de la cirugía son los siguientes:
  • Si un niño muy pequeño presenta un sarcoma de Ewing, la cirugía puede ser una terapia menos mórbida que la radioterapia debido a que la radiación retrasa el crecimiento óseo.
  • Es posible que el tratamiento con cirugía permita omitir la radioterapia, que se podría relacionar con un aumento de riesgo de neoplasias subsiguientes.
  • Otro de los beneficios posibles de la resección quirúrgica del tumor primario se relaciona con la cantidad de necrosis del tumor resecado. Los pacientes con un tumor residual viable en el espécimen resecado tienen un desenlace más precario que aquellos que exhiben una necrosis completa. En un estudio francés sobre Ewing (EW88), la SSC de pacientes con menos de 5 % de tumor viable fue de 75 %, la SSC de pacientes con 5 a 30 % de tumor viable fue de 48 % y la SSC de pacientes con más de 30 % de tumor viable fue de 20 %.[16]
En un grupo del ensayo prospectivo aleatorizado EURO-EWING-INTERGROUP-EE99 (NCT00020566), se demostró beneficio de la terapia con dosis altas de busulfano y melfalán seguida de rescate de células madre en comparación con quimioterapia continuada para los pacientes con tumores localizados y respuesta precaria a la quimioterapia inicial.[18]
La presencia de una fractura patológica en el momento del diagnóstico no excluye la resección quirúrgica y no se relaciona con resultados adversos.[19]
Radioterapia
La radioterapia se suele emplear en los siguientes casos:
  • Pacientes que no tienen la opción de una cirugía que preserve la funcionalidad.
  • Pacientes cuyos tumores se resecaron, pero con márgenes inadecuados.
La radioterapia se administra en un entorno en el que se aplican técnicas estrictas de planificación por profesionales experimentados en el tratamiento del sarcoma de Ewing. Tal enfoque producirá un control local del tumor con morbilidad aceptable en la mayoría de los pacientes.[1,2,20]
La dosis de radiación se ajusta en ocasiones según el grado de enfermedad residual después del procedimiento quirúrgico inicial. Cuando no se realiza una resección quirúrgica, por lo general se administra la radioterapia en dosis fraccionadas, por un total de casi 55,8 Gy dirigidos al volumen tumoral previo a la quimioterapia. En un estudio aleatorizado de 40 pacientes con sarcoma de Ewing en el que se usaron 55,8 Gy dirigidos a la zona que ocupaba el tumor antes de la quimioterapia, con un margen de 2 cm, se comparó este tratamiento con la misma dosis tumoral total luego de 39,6 Gy dirigidos al hueso entero y no se observó diferencia en el control local ni la SSC.[3] La radioterapia hiperfraccionada no se relacionó con un mejor control local o una disminución de la morbilidad.[1]
En aquellos pacientes con enfermedad residual después de un intento de resecado quirúrgico, el Intergroup Ewing Sarcoma Study (INT-0091) recomienda 45 Gy dirigidos al sitio original de la enfermedad más un refuerzo de 10,8 Gy para pacientes con enfermedad residual macroscópica y 45 Gy más un refuerzo de 5,4 Gy para los pacientes con enfermedad residual microscópica. No se recomienda radioterapia para aquellos que no muestran pruebas de enfermedad residual microscópica después de una resección quirúrgica.[13]
En la comparación entre planes de tratamiento con radioterapia de haz de protón y con radioterapia de intensidad modulada (RTIM), se observó que la radioterapia de haz de protón puede preservar más tejido normal adyacente a los tumores primarios del sarcoma de Ewing que la RTIM.[21] El seguimiento continúa siendo relativamente corto y no hay datos disponibles para determinar si una reducción en la dosis al tejido adyacente mejoraría los resultados funcionales o reduciría el riesgo de una neoplasia maligna secundaria. Debido a que el número de pacientes es pequeño y el seguimiento es relativamente corto, no es posible determinar si el riesgo de recidiva local podría aumentar al reducirse la dosis de radiación a los tejidos adyacentes al tumor primario.
Se observaron tasas más altas de fracaso local en pacientes mayores de 14 años que presentaban tumores de más de 8 cm de longitud.[22] En un análisis retrospectivo de pacientes con sarcoma de Ewing de la pared torácica, se comparó a pacientes que recibieron radioterapia dirigida a un hemitórax con aquellos que la recibieron solo en la pared torácica. Los pacientes con invasión pleural, derrame pleural o contaminación intraoperatoria se asignaron a radioterapia dirigida a un hemitórax. La SSC fue más larga en los pacientes que recibieron radiación dirigida a un hemitórax, pero la diferencia no fue estadísticamente significativa. Además, la mayoría de pacientes con tumores vertebrales primarios no recibieron radiación dirigida al hemitórax y tuvieron una probabilidad más baja de SSC.[23]
La radioterapia se relaciona con la presentación de neoplasias malignas subsiguientes. En un estudio retrospectivo, se notó que los pacientes que recibieron 60 Gy o más presentaron una incidencia de segundas neoplasias malignas de 20 %. Quienes recibieron de 48 a 60 Gy tuvieron una incidencia de 5 % y quienes recibieron menos de 48 Gy no presentaron una segunda neoplasia maligna.[24]
Quimioterapia de dosis altas y rescate autógeno de células madre
Datos probatorios (quimioterapia de dosis altas y rescate autógeno de células madre):
  1. En el ensayo prospectivo aleatorizado EURO-EWING-INTERGROUP-EE99 (NCT00020566), se investigó la función de la terapia con dosis altas de busulfano y melfalán (BuMel) seguida de rescate de células madre para los siguientes dos grupos:[18]
    1. Pacientes que presentaban metástasis pulmonares aisladas (R2pulm).
    2. Pacientes con tumores localizados que responden mal a la quimioterapia inicial (<90 % de necrosis) o que tienen tumores de gran tamaño (>200 ml) (R2loc).
      En ambos grupos de estudio se presentó la posibilidad de sesgo de selección de pacientes aptos para participar que aceptaron someterse a la aleatorización, lo que limita la generalización de los resultados.
      • En el grupo de pacientes R2pulm, no se encontraron diferencias en la SSC a 3 años (55,7 % con BuMel vs. 50,3 % con quimioterapia continuada y radiación pulmonar completa; P = 0,21).
      • En el grupo de pacientes R2loc, la SSC a 3 años fue más alta para BuMel en comparación con la quimioterapia continuada (66,9 vs. 53,1 %; P = 0,019).
    Vincristina, ifosfamida, doxorrubicina y etopósido (VIDE) fue el régimen de inducción que se utilizó en el ensayo EURO-EWING-INTERGROUP-EE99. En este régimen, la intensidad de dosificación es menor que en el régimen de los estudios del COG. Esto se puede inferir de la intensidad de dosificación prevista para los fármacos usados durante el periodo de 21 semanas previo a la aleatorización en el estudio EURO-EWING-INTERGROUP-EE99 (consultar el Cuadro 4). La menor intensidad de dosificación también se puede inferir de los resultados del estudio EURO-EWING-INTERGROUP-EE99 para los pacientes clasificados en el estrato de enfermedad localizada. Los siguientes son los resultados de este estudio:
    • Los pacientes del estrato de menor riesgo, R1, eran pacientes con tumores primarios pequeños de volumen inferior a 200 ml. Además, los pacientes que presentaron una respuesta precaria durante los primeros 6 ciclos de VIDE (de acuerdo con la evaluación patológica o radiológica), pasaron del estrato R1 al R2. Esto llevó a que en el estrato R1 solo se incluyera a los pacientes con tumores primarios más pequeños y respuesta favorable a la terapia inicial. La probabilidad de SSC a 3 años para este grupo de riesgo bajo fue de 76 %.[25]
    • La probabilidad de SSC a 5 años fue de 73 % para todos los pacientes con sarcoma de Ewing que recibieron tratamiento en el ensayo COG-AEWS1031 (NCT01231906), incluso los pacientes con tumores primarios grandes y los que presentaron respuesta precaria a la terapia inicial.[10]
    La observación de que la terapia de dosis altas con rescate autógeno de células madre mejora los desenlaces de pacientes con respuesta precaria a la terapia inicial del estudio EURO-EWING-INTERGROUP-EE99 se debe interpretar en este contexto. La ventaja de la terapia de dosis altas como consolidación para pacientes con respuesta precaria al tratamiento inicial con un régimen menos intenso no se puede extrapolar a la población de pacientes que reciben un tratamiento más intensivo como terapia inicial.

Ensayos clínicos en curso

Realizar una búsqueda avanzada en inglés de los ensayos clínicos sobre cáncer auspiciados por el NCI que ahora aceptan pacientes. La búsqueda se puede simplificar por ubicación del ensayo, tipo de tratamiento, nombre del fármaco y otros criterios. También se dispone de información general sobre los ensayos clínicos.
Bibliografía
  1. Dunst J, Jürgens H, Sauer R, et al.: Radiation therapy in Ewing's sarcoma: an update of the CESS 86 trial. Int J Radiat Oncol Biol Phys 32 (4): 919-30, 1995. [PUBMED Abstract]
  2. Donaldson SS, Torrey M, Link MP, et al.: A multidisciplinary study investigating radiotherapy in Ewing's sarcoma: end results of POG #8346. Pediatric Oncology Group. Int J Radiat Oncol Biol Phys 42 (1): 125-35, 1998. [PUBMED Abstract]
  3. Craft A, Cotterill S, Malcolm A, et al.: Ifosfamide-containing chemotherapy in Ewing's sarcoma: The Second United Kingdom Children's Cancer Study Group and the Medical Research Council Ewing's Tumor Study. J Clin Oncol 16 (11): 3628-33, 1998. [PUBMED Abstract]
  4. Nilbert M, Saeter G, Elomaa I, et al.: Ewing's sarcoma treatment in Scandinavia 1984-1990--ten-year results of the Scandinavian Sarcoma Group Protocol SSGIV. Acta Oncol 37 (4): 375-8, 1998. [PUBMED Abstract]
  5. Krasin MJ, Davidoff AM, Rodriguez-Galindo C, et al.: Definitive surgery and multiagent systemic therapy for patients with localized Ewing sarcoma family of tumors: local outcome and prognostic factors. Cancer 104 (2): 367-73, 2005. [PUBMED Abstract]
  6. Bacci G, Forni C, Longhi A, et al.: Long-term outcome for patients with non-metastatic Ewing's sarcoma treated with adjuvant and neoadjuvant chemotherapies. 402 patients treated at Rizzoli between 1972 and 1992. Eur J Cancer 40 (1): 73-83, 2004. [PUBMED Abstract]
  7. Rosito P, Mancini AF, Rondelli R, et al.: Italian Cooperative Study for the treatment of children and young adults with localized Ewing sarcoma of bone: a preliminary report of 6 years of experience. Cancer 86 (3): 421-8, 1999. [PUBMED Abstract]
  8. Bacci G, Longhi A, Briccoli A, et al.: The role of surgical margins in treatment of Ewing's sarcoma family tumors: experience of a single institution with 512 patients treated with adjuvant and neoadjuvant chemotherapy. Int J Radiat Oncol Biol Phys 65 (3): 766-72, 2006. [PUBMED Abstract]
  9. Grier HE, Krailo MD, Tarbell NJ, et al.: Addition of ifosfamide and etoposide to standard chemotherapy for Ewing's sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 348 (8): 694-701, 2003. [PUBMED Abstract]
  10. Womer RB, West DC, Krailo MD, et al.: Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children's Oncology Group. J Clin Oncol 30 (33): 4148-54, 2012. [PUBMED Abstract]
  11. Ferrari S, Mercuri M, Rosito P, et al.: Ifosfamide and actinomycin-D, added in the induction phase to vincristine, cyclophosphamide and doxorubicin, improve histologic response and prognosis in patients with non metastatic Ewing's sarcoma of the extremity. J Chemother 10 (6): 484-91, 1998. [PUBMED Abstract]
  12. Kolb EA, Kushner BH, Gorlick R, et al.: Long-term event-free survival after intensive chemotherapy for Ewing's family of tumors in children and young adults. J Clin Oncol 21 (18): 3423-30, 2003. [PUBMED Abstract]
  13. Granowetter L, Womer R, Devidas M, et al.: Dose-intensified compared with standard chemotherapy for nonmetastatic Ewing sarcoma family of tumors: a Children's Oncology Group Study. J Clin Oncol 27 (15): 2536-41, 2009. [PUBMED Abstract]
  14. Hoffmann C, Ahrens S, Dunst J, et al.: Pelvic Ewing sarcoma: a retrospective analysis of 241 cases. Cancer 85 (4): 869-77, 1999. [PUBMED Abstract]
  15. Shamberger RC, Laquaglia MP, Krailo MD, et al.: Ewing sarcoma of the rib: results of an intergroup study with analysis of outcome by timing of resection. J Thorac Cardiovasc Surg 119 (6): 1154-61, 2000. [PUBMED Abstract]
  16. Oberlin O, Deley MC, Bui BN, et al.: Prognostic factors in localized Ewing's tumours and peripheral neuroectodermal tumours: the third study of the French Society of Paediatric Oncology (EW88 study). Br J Cancer 85 (11): 1646-54, 2001. [PUBMED Abstract]
  17. Yock TI, Krailo M, Fryer CJ, et al.: Local control in pelvic Ewing sarcoma: analysis from INT-0091--a report from the Children's Oncology Group. J Clin Oncol 24 (24): 3838-43, 2006. [PUBMED Abstract]
  18. Whelan J, Le Deley MC, Dirksen U, et al.: High-Dose Chemotherapy and Blood Autologous Stem-Cell Rescue Compared With Standard Chemotherapy in Localized High-Risk Ewing Sarcoma: Results of Euro-E.W.I.N.G.99 and Ewing-2008. J Clin Oncol : JCO2018782516, 2018. [PUBMED Abstract]
  19. Bramer JA, Abudu AA, Grimer RJ, et al.: Do pathological fractures influence survival and local recurrence rate in bony sarcomas? Eur J Cancer 43 (13): 1944-51, 2007. [PUBMED Abstract]
  20. Krasin MJ, Rodriguez-Galindo C, Billups CA, et al.: Definitive irradiation in multidisciplinary management of localized Ewing sarcoma family of tumors in pediatric patients: outcome and prognostic factors. Int J Radiat Oncol Biol Phys 60 (3): 830-8, 2004. [PUBMED Abstract]
  21. Rombi B, DeLaney TF, MacDonald SM, et al.: Proton radiotherapy for pediatric Ewing's sarcoma: initial clinical outcomes. Int J Radiat Oncol Biol Phys 82 (3): 1142-8, 2012. [PUBMED Abstract]
  22. Fuchs B, Valenzuela RG, Sim FH: Pathologic fracture as a complication in the treatment of Ewing's sarcoma. Clin Orthop (415): 25-30, 2003. [PUBMED Abstract]
  23. Schuck A, Ahrens S, Konarzewska A, et al.: Hemithorax irradiation for Ewing tumors of the chest wall. Int J Radiat Oncol Biol Phys 54 (3): 830-8, 2002. [PUBMED Abstract]
  24. Kuttesch JF Jr, Wexler LH, Marcus RB, et al.: Second malignancies after Ewing's sarcoma: radiation dose-dependency of secondary sarcomas. J Clin Oncol 14 (10): 2818-25, 1996. [PUBMED Abstract]
  25. Le Deley MC, Paulussen M, Lewis I, et al.: Cyclophosphamide compared with ifosfamide in consolidation treatment of standard-risk Ewing sarcoma: results of the randomized noninferiority Euro-EWING99-R1 trial. J Clin Oncol 32 (23): 2440-8, 2014. [PUBMED Abstract]

Tratamiento del sarcoma de Ewing metastásico

En cerca de 25 % de los pacientes se detecta metástasis en el momento del diagnóstico.[1] El pronóstico para los pacientes con enfermedad metastásica es precario. Los tratamientos actuales para los pacientes que presentan enfermedad metastásica permiten que estos alcancen una supervivencia sin complicaciones (SSC) a 6 años de casi 28 % y una supervivencia general (SG) de casi 30 %.[2,3] En los pacientes con metástasis pulmonar o pleural sola, la SSC a 6 años es de cerca de 40 % cuando se utiliza la irradiación pulmonar bilateral.[2,4] En contraste, los pacientes con metástasis en huesos o médula ósea tienen una SSC a 4 años de cerca de 28 % y los pacientes con una metástasis combinada de pulmón y hueso o médula ósea tienen una SSC a 4 años de 14 %.[4,5]
Los siguientes factores pronostican de forma independiente un desenlace precario para pacientes que presentan enfermedad metastásica:[3]
  • Edad mayor de 14 años.
  • Volumen del tumor primario de más de 200 ml.
  • Más de un sitio de metástasis óseas.
  • Metástasis en la médula ósea.
  • Metástasis pulmonares adicionales.

Opciones de tratamiento estándar para el sarcoma de Ewing metastásico

Las opciones de tratamiento estándar para el sarcoma de Ewing metastásico incluyen los siguientes procedimientos:

Quimioterapia

El tratamiento estándar para pacientes con sarcoma de Ewing metastásico en el que se alterna vincristina, doxorrubicina, ciclofosfamida y ifosfamida/etopósido combinados con medidas de control local adecuadas aplicadas tanto al sitio primario como al metastásico, con frecuencia produce reacciones parciales o completas; sin embargo, la tasa general de curación es de 20 %.[5-7]
Los regímenes de quimioterapia que siguen no mostraron proporcionar beneficios:
  • En el estudio Intergroup Ewing Sarcoma Study, los pacientes con enfermedad metastásica no mostraron ningún beneficio de la adición de ifosfamida y etopósido a un régimen estándar de vincristina, doxorrubicina, ciclofosfamida y dactinomicina.[7]
  • En otro estudio del Intergroup, el aumento en la intensidad de la dosis de ciclofosfamida, ifosfamida y doxorrubicina no mejoró el resultado comparado con los regímenes de dosis de intensidad estándar. Este régimen aumentó la toxicidad y el riesgo de una segunda neoplasia maligna sin mejorar la SSC o la SG.[2]
  • La intensificación de ifosfamida a 2,8 g/m2 diarios durante 5 días no mejoró el resultado cuando se administró con quimioterapia estándar a pacientes de sarcoma de Ewing metastásico recién diagnosticado.[8][Grado de comprobación: 3iiiDi]

Cirugía y radioterapia

El uso sistemático de radioterapia y cirugía para los sitios de metástasis puede mejorar el resultado general en pacientes con metástasis extrapulmonares.
Datos probatorios (cirugía y radioterapia):
  1. En un análisis retrospectivo de datos de 120 pacientes de sarcoma de Ewing metastásico multifocal, los pacientes que recibieron tratamiento local tanto para el tumor primario como para las metástasis tuvieron un resultado mejor que aquellos que recibieron tratamiento local solo en el tumor primario o no lo recibieron (SSC a 3 años, 39 % vs. 17 y 14 %, P < 0,001).[9]
  2. En tres análisis retrospectivos de grupos más pequeños de pacientes que recibían radioterapia dirigida a todos los sitios tumorales, se observó una tendencia similar a un resultado mejor con la irradiación de todos los sitios de enfermedad metastásica.[10-12]
    Estos resultados se deben interpretar con cautela. Los pacientes que recibieron terapia de control local en todos los sitios con enfermedad metastásica fueron seleccionados por el investigador que administraba el tratamiento; no se asignaron al azar. Los pacientes con tantas metástasis que la radioterapia dirigida a todos los sitios produciría una insuficiencia de la médula ósea no se seleccionaron para recibir radiación dirigida a todos los sitios de enfermedad metastásica. Los pacientes que no alcanzaron el control del tumor primario no continuaron recibiendo terapia de control local en todos los sitios de enfermedad metastásica. Hubo tal sesgo de selección que, aunque todos los pacientes en estos informes presentaban sitios múltiples de enfermedad metastásica, los pacientes sometidos a cirugía o radioterapia dirigida a todos los sitios de enfermedad metastásica clínicamente detectable presentaron mejores respuestas a la terapia sistémica y menos sitios de metástasis que aquellos que no recibieron un tratamiento similar de los sitios metastásicos.
Se deberá considerar la administración de radioterapia en un centro en el que expertos en el tratamiento del sarcoma de Ewing apliquen técnicas estrictas de planificación. Dicho enfoque proporcionará un control local del tumor con una morbilidad aceptable en la mayoría de los pacientes.[13]
La dosis de radiación depende del sitio de la enfermedad metastásica:
  • Hueso y tejido blando. Se ha utilizado la radioterapia corporal estereotáctica para tratar sitios metastásicos en huesos y tejidos blandos. La mediana de dosis total de radioterapia corporal estereotáctica curativa o definitiva administrada fue de 40 Gy en 5 fracciones (intervalo, 30–60 Gy en 3–10 fracciones). La mediana de dosis total de radioterapia corporal estereotáctica paliativa administrada fue de 40 Gy en 5 fracciones (intervalo, 16–50 Gy en 1–10 fracciones). Estos regímenes de ciclos cortos con fracciones de dosis grandes son el equivalente biológico a dosis más altas administradas en fracciones de dosis más pequeñas durante ciclos más largos de tratamiento.[14][Grado de comprobación: 3iiiC]
  • Pulmonar. Para todos los pacientes con metástasis pulmonar, se deberá considerar la radiación dirigida a todo el pulmón, incluso cuando se obtenga una resolución completa de la metástasis pulmonar manifiesta con quimioterapia.[4,5,15] Las dosis de radiación se modulan de acuerdo con el tamaño del pulmón que se irradiará y con el funcionamiento pulmonar. Por lo general, se usan dosis de 12 a 15 Gy cuando se tratan los pulmones completos.

Otros tratamientos

Los tratamientos más intensivos, muchos de los que incorporan dosis altas de quimioterapia con irradiación corporal total o sin esta, junto con apoyo de células madre, no lograron mostrar mejora en las tasas de SSC de pacientes con metástasis óseas o en la médula ósea.[2,3,10,16-18]; [19][Grado de comprobación: 3iiiDi] (Para obtener más información, consultar la sección de este sumario sobre Terapia de dosis altas con rescata de células madre para el sarcoma de Ewing).
  • Dosis altas de quimioterapia con apoyo de células madre. Uno de los estudios más grandes fue el ensayo EURO-EWING-INTERGROUP-EE99 R3 en el que participaron 281 pacientes de sarcoma de Ewing primario con diseminación metastásica. Los pacientes se trataron con seis ciclos de vincristina, ifosfamida, doxorrubicina y etopósido, seguidos de terapia de dosis altas y trasplante autógeno de células madre; se demostró una SSC a 3 años de 27 % y SG de 34 %. Se identificaron como factores pronósticos independientes la presencia y número de lesiones óseas, un volumen del tumor primario mayor de 200 ml, edad mayor de 14 años, metástasis pulmonares adicionales y compromiso de la médula ósea.[3][Grado de comprobación: 3iiDi] En el ensayo prospectivo aleatorizado EURO-EWING-INTERGROUP-EE99 (NCT00020566), se investigó la función de la terapia con dosis altas de busulfano y melfalán (BuMel) seguida de rescate de células madre. En el grupo de pacientes con metástasis pulmonares aisladas, no se encontraron diferencias en la SSC a 3 años (55,7 % con BuMel vs. 50,3 % con quimioterapia continuada y radiación pulmonar completa; P = 0,21). [20]
  • Melfalán. El melfalán, en dosis que no causen mielosupresión, mostró ser un fármaco activo en un estudio de tratamiento inicial para pacientes con enfermedad metastásica en el momento del diagnóstico; sin embargo, la tasa de curación permaneció extremadamente baja.[21]
  • Irinotecán. Se administró irinotecán como fármaco único en un estudio de tratamiento inicial para pacientes de sarcoma de Ewing metastásico recién diagnosticado y mostró eficacia relativamente baja (reacción parcial en 5 de 24 pacientes).[22][Grado de comprobación: 3iiiDiv] Es necesario investigar más para determinar la dosificación del irinotecán y sus combinaciones con otros fármacos para pacientes de sarcoma de Ewing.
Bibliografía
  1. Esiashvili N, Goodman M, Marcus RB Jr: Changes in incidence and survival of Ewing sarcoma patients over the past 3 decades: Surveillance Epidemiology and End Results data. J Pediatr Hematol Oncol 30 (6): 425-30, 2008. [PUBMED Abstract]
  2. Miser JS, Goldsby RE, Chen Z, et al.: Treatment of metastatic Ewing sarcoma/primitive neuroectodermal tumor of bone: evaluation of increasing the dose intensity of chemotherapy--a report from the Children's Oncology Group. Pediatr Blood Cancer 49 (7): 894-900, 2007. [PUBMED Abstract]
  3. Ladenstein R, Pötschger U, Le Deley MC, et al.: Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial. J Clin Oncol 28 (20): 3284-91, 2010. [PUBMED Abstract]
  4. Paulussen M, Ahrens S, Craft AW, et al.: Ewing's tumors with primary lung metastases: survival analysis of 114 (European Intergroup) Cooperative Ewing's Sarcoma Studies patients. J Clin Oncol 16 (9): 3044-52, 1998. [PUBMED Abstract]
  5. Paulussen M, Ahrens S, Burdach S, et al.: Primary metastatic (stage IV) Ewing tumor: survival analysis of 171 patients from the EICESS studies. European Intergroup Cooperative Ewing Sarcoma Studies. Ann Oncol 9 (3): 275-81, 1998. [PUBMED Abstract]
  6. Pinkerton CR, Bataillard A, Guillo S, et al.: Treatment strategies for metastatic Ewing's sarcoma. Eur J Cancer 37 (11): 1338-44, 2001. [PUBMED Abstract]
  7. Miser JS, Krailo MD, Tarbell NJ, et al.: Treatment of metastatic Ewing's sarcoma or primitive neuroectodermal tumor of bone: evaluation of combination ifosfamide and etoposide--a Children's Cancer Group and Pediatric Oncology Group study. J Clin Oncol 22 (14): 2873-6, 2004. [PUBMED Abstract]
  8. Magnan H, Goodbody CM, Riedel E, et al.: Ifosfamide dose-intensification for patients with metastatic Ewing sarcoma. Pediatr Blood Cancer 62 (4): 594-7, 2015. [PUBMED Abstract]
  9. Haeusler J, Ranft A, Boelling T, et al.: The value of local treatment in patients with primary, disseminated, multifocal Ewing sarcoma (PDMES). Cancer 116 (2): 443-50, 2010. [PUBMED Abstract]
  10. Burdach S, Thiel U, Schöniger M, et al.: Total body MRI-governed involved compartment irradiation combined with high-dose chemotherapy and stem cell rescue improves long-term survival in Ewing tumor patients with multiple primary bone metastases. Bone Marrow Transplant 45 (3): 483-9, 2010. [PUBMED Abstract]
  11. Paulino AC, Mai WY, Teh BS: Radiotherapy in metastatic ewing sarcoma. Am J Clin Oncol 36 (3): 283-6, 2013. [PUBMED Abstract]
  12. Casey DL, Wexler LH, Meyers PA, et al.: Radiation for bone metastases in Ewing sarcoma and rhabdomyosarcoma. Pediatr Blood Cancer 62 (3): 445-9, 2015. [PUBMED Abstract]
  13. Donaldson SS, Torrey M, Link MP, et al.: A multidisciplinary study investigating radiotherapy in Ewing's sarcoma: end results of POG #8346. Pediatric Oncology Group. Int J Radiat Oncol Biol Phys 42 (1): 125-35, 1998. [PUBMED Abstract]
  14. Brown LC, Lester RA, Grams MP, et al.: Stereotactic body radiotherapy for metastatic and recurrent ewing sarcoma and osteosarcoma. Sarcoma 2014: 418270, 2014. [PUBMED Abstract]
  15. Spunt SL, McCarville MB, Kun LE, et al.: Selective use of whole-lung irradiation for patients with Ewing sarcoma family tumors and pulmonary metastases at the time of diagnosis. J Pediatr Hematol Oncol 23 (2): 93-8, 2001. [PUBMED Abstract]
  16. Meyers PA, Krailo MD, Ladanyi M, et al.: High-dose melphalan, etoposide, total-body irradiation, and autologous stem-cell reconstitution as consolidation therapy for high-risk Ewing's sarcoma does not improve prognosis. J Clin Oncol 19 (11): 2812-20, 2001. [PUBMED Abstract]
  17. Burdach S, Meyer-Bahlburg A, Laws HJ, et al.: High-dose therapy for patients with primary multifocal and early relapsed Ewing's tumors: results of two consecutive regimens assessing the role of total-body irradiation. J Clin Oncol 21 (16): 3072-8, 2003. [PUBMED Abstract]
  18. Thiel U, Wawer A, Wolf P, et al.: No improvement of survival with reduced- versus high-intensity conditioning for allogeneic stem cell transplants in Ewing tumor patients. Ann Oncol 22 (7): 1614-21, 2011. [PUBMED Abstract]
  19. Loschi S, Dufour C, Oberlin O, et al.: Tandem high-dose chemotherapy strategy as first-line treatment of primary disseminated multifocal Ewing sarcomas in children, adolescents and young adults. Bone Marrow Transplant 50 (8): 1083-8, 2015. [PUBMED Abstract]
  20. Whelan J, Le Deley MC, Dirksen U, et al.: High-Dose Chemotherapy and Blood Autologous Stem-Cell Rescue Compared With Standard Chemotherapy in Localized High-Risk Ewing Sarcoma: Results of Euro-E.W.I.N.G.99 and Ewing-2008. J Clin Oncol : JCO2018782516, 2018. [PUBMED Abstract]
  21. Luksch R, Grignani G, Fagioli F, et al.: Response to melphalan in up-front investigational window therapy for patients with metastatic Ewing's family tumours. Eur J Cancer 43 (5): 885-90, 2007. [PUBMED Abstract]
  22. Morland B, Platt K, Whelan JS: A phase II window study of irinotecan (CPT-11) in high risk Ewing sarcoma: a Euro-E.W.I.N.G. study. Pediatr Blood Cancer 61 (3): 442-5, 2014. [PUBMED Abstract]

Tratamiento del sarcoma de Ewing recidivante

La recidiva del sarcoma de Ewing es más común durante los 2 años posteriores al diagnóstico inicial (casi 80 %).[1,2] Sin embargo, las recaídas tardías que ocurren después de 5 años del diagnóstico inicial son más comunes en el sarcoma de Ewing (13 %; intervalo de confianza de 95 %, 9,4–16,5) que en el caso de otros tumores sólidos infantiles.[3] En un análisis de la base de datos de Surveillance, Epidemiology, and End Results se identificaron a 1351 pacientes que sobrevivieron más de 60 meses después del momento del diagnóstico.[4] Entre estos pacientes, fallecieron 209; 144 de estas muertes (69 %) se atribuyeron al sarcoma de Ewing recidivante progresivo. El riesgo más alto de fallecimiento tardío se vinculó con la raza negra, el sexo masculino y una edad mayor en el momento del diagnóstico inicial, y tumores primarios óseos pélvicos y axiales. Este análisis abarcó el período entre 1973 y 2013, y los 1351 pacientes solo representaban a 38 % de los pacientes de la muestra original; esto refleja los resultados inferiores de los tratamientos de épocas anteriores. Es posible que los pacientes que alcanzan la supervivencia a 5 años tras recibir tratamiento más contemporáneo no repitan esta experiencia.
El pronóstico general para los pacientes de sarcoma de Ewing recidivante es precario; la supervivencia a 5 años después de una recidiva es de cerca de 10 a 15 %.[2,5,6]; [1][Grado de comprobación: 3iiA]
Los siguientes son los factores pronósticos:
  • Tiempo hasta la recidiva. El tiempo hasta la recidiva es el factor pronóstico más importante. Los pacientes cuyo sarcoma de Ewing recidiva más de 2 años después del diagnóstico inicial tuvieron una supervivencia a 5 años de 30 versus 7 % para los pacientes cuyo sarcoma de Ewing recidivó antes de 2 años.[1,2]
  • Recidiva local y a distancia. Los pacientes que presentan tanto recidiva local como metástasis a distancia tienen desenlaces más precarios que aquellos con recidiva local aislada o recidiva metastásica sola.[1,2]
  • Recidiva pulmonar aislada. La recidiva pulmonar aislada no fue un factor pronóstico importante en una serie de América del Norte.[1] En la experiencia italiano-escandinava, una edad menor, un intervalo sin enfermedad más prolongado y una recidiva solo en el pulmón se relacionaron con una supervivencia sin progresión (SSP) más larga después de la recidiva. En esta experiencia, fue menos probable que lograran una segunda remisión completa aquellos pacientes con una recidiva de sarcoma de Ewing después del tratamiento inicial con dosis altas de terapia con rescate autógeno de células madre.[7][Grado de comprobación: 3iiDiii]

Opciones de tratamiento para el sarcoma de Ewing recidivante

La selección del tratamiento para pacientes con enfermedad recidivante depende de muchos factores, incluso, los siguientes:
  • Sitio de recidiva.
  • Tratamiento previo.
  • Consideraciones individuales del paciente.
No hay un tratamiento estándar de segunda línea para el sarcoma de Ewing recidivante o resistente.
Las opciones de tratamiento estándar para el sarcoma de Ewing recidivante incluyen los siguientes procedimientos:

Quimioterapia

Las combinaciones de quimioterapia, como ciclofosfamida y topotecán, o irinotecán y temozolomida, con vincristina o sin esta, son activas para el sarcoma de Ewing recidivante y se pueden tener en cuenta para estos pacientes.[8-13]
Cuadro 5. Resultados de estudios en los que se usaron regímenes de ciclofosfamida y topotecán para tratar a pacientes con sarcoma de Ewing en recaída o recidivante
ENLARGE
Referencia del estudioFase del ensayo (número total de pacientes)Mediana de edad (intervalo) (años)Respuesta completa/respuesta parcialTasa de respuesta objetivaCiclofosfamida (mg/m2)/topotecán (mg/m2) × díaOtros fármacos
VCR = vincristina.
Saylors et al.[8]Fase II (17)13,8 (1–21)1/329 %250 × 5/0,75 × 5Ninguno
Hunold et al.[10]Retrospectivo (54)17,4 (3–49)0/1630 %250 × 5/0,75 × 5Ninguno
Farhat et al.[14]Retrospectivo (14)11 (2–19)0/321 %250 × 5/0,75 × 5Ninguno
Kebudi et al.[15]Retrospectivo (14)13 (3–16)2/550 %250 × 5/0,75 × 5VCR
En estos estudios combinados participaron 99 pacientes y se observaron 3 remisiones completas y 27 remisiones parciales. La tasa de respuesta objetiva fue de 30 %.
Cuadro 6. Resultados de estudios en los que se usaron regímenes de temozolomida e irinotecán para tratar a pacientes con sarcoma de Ewing en recaída o recidivante
ENLARGE
Referencia del estudioFase del ensayo (número total de pacientes)Mediana de edad (intervalo) (años)Respuesta completa/respuesta parcialTasa de respuesta objetivaTemozolomida (mg/m2)/irinotecán (mg/m2) × día × semanaOtros fármacos
BEV = bevacizumab; IV = intravenoso; TMS = temsirólimus VCR = vincristina; VO = vía oral.
Wagner et al.[11]Retrospectivo (16)18 (7–33)1/329 %100 × 5/IV 10–20 × 5 × 2Ninguno
Casey et al.[12]Retrospectivo (19)19,5 (2–40)5/763 %100 × 5/IV 20 × 5 × 2Ninguno
Hernandez-Marques et al.[16]Retrospectivo (8)13 (6–18)0/337 %80–100 × 5/IV 10–20 × 5 × 2Ninguno
Raciborska et al.[13]Retrospectivo (22)14,35/754 %125 × 5/IV 50 × 5VCR
McKnall-Knapp et al.[17]Fase I (1)N/A0/1100 %100 × 5/IV 20 × 5 × 2VCR
Wagner et al.[18]Fase I (5)(<21)1/140 %100–150 × 5/VO 35–90 × 5VCR
Wagner et al.[19]Fase I (2)20, 221/1100 %150 × 5/VO 90 × 5VCR, BEV
Bagatell et al.[20]Fase I (7)(<21)0/114 %100–150 × 5/VO 50–90 × 5TMS
Kurucu et al.[21]Retrospectivo (20)14 (1–18)Desconocido55 %100 × 5/IV 20 × 5 × 2Ninguno
Anderson et al.[22]Retrospectivo (25)157/964 %100 × 5/IV 10 × 5 × 2Ninguno
Palmerini et al.[23]Retrospectivo (51)21 (3–65)5/1234 %100 × 5/IV 40 × 5Ninguno
En estos estudios combinados participaron 176 pacientes y se observaron 18 remisiones completas y 56 remisiones parciales. La tasa de respuesta objetiva fue de 42 %.
Datos probatorios (quimioterapia):
  1. En un estudio de fase II de topotecán y ciclofosfamida, se observó un respuesta en 6 de 17 pacientes de sarcoma de Ewing; 16 de 49 pacientes presentaron una respuesta clínica en un ensayo similar en Alemania.[8,10]
  2. En varios estudios retrospectivos se ha demostrado la eficacia de temozolomida e irinotecán en pacientes con sarcoma de Ewing recidivante.[12,21,23]
    En el mayor estudio retrospectivo multicéntrico sobre la combinación de temozolomida e irinotecán en pacientes con sarcoma de Ewing recidivante y resistente primario, 51 pacientes (66 % de los pacientes con edad ≥18 años; mediana de edad: 21 años) se trataron con temozolomida (100 mg/m2/día oral) e irinotecán (40 mg/m2/día intravenoso), los días 1 al 5, cada 21 días. De los pacientes, 25 % se encontraban en la primera recaída o progresión, mientras que el resto de los pacientes se encontraban en la segunda o posterior recaída o progresión.[23]
    • Cinco pacientes (10 %) lograron remisiones completas, 12 pacientes (24 %) lograron remisiones parciales y 19 pacientes (37 %) tuvieron enfermedad estable, con una tasa de control de la enfermedad de 71 %.
    • En el análisis univariado, los únicos dos factores que predijeron la respuesta a temozolomida e irinotecán en la SSP fueron el índice de rendimiento y las concentraciones de lactato-deshidrogenasa (LDH).
    • Luego de inducir la remisión de la enfermedad se reexpuso a dos pacientes a temozolomida e irinotecán. Ambos pacientes lograron remisiones parciales durante la reexposición; la remisión de uno de los pacientes duró al menos 15 ciclos y la otra remisión duró 22 ciclos.[23]
  3. La combinación de docetaxel con gemcitabina o irinotecán logró respuestas objetivas del sarcoma de Ewing recidivante.[24][Grado de comprobación: 3iiA]; [25,26][Grado de comprobación: 3iiiDiv]
  4. Las dosis altas de ifosfamida (3 g/m2 diarios por 5 días = 15 g/m2) mostraron actividad en pacientes cuyo sarcoma de Ewing recidivó después de la terapia que incluyó ifosfamida estándar (1,8 g/m2 diarios por 5 días = 9 g/m2).[27][Grado de comprobación: 3iiiDiv]

Radioterapia

La radioterapia dirigida a las lesiones óseas puede proporcionar paliación, aunque la resección radical puede mejorar el desenlace.[2] Se debe tener en cuenta la irradiación de todo el pulmón para los pacientes con metástasis pulmonar que no recibieron radioterapia dirigida a los pulmones.[28] La enfermedad residual en el pulmón se puede extirpar mediante cirugía.

Quimioterapia de dosis altas con apoyo de células madre

Aunque se han llevado a cabo intentos radicales de control de esta enfermedad, incluso regímenes mielosupresores, no hay pruebas actuales que permitan concluir que la terapia mielosupresora es superior a la quimioterapia estándar.[29,30]; [31][Grado de comprobación: 3iiA]; [32][Grado de comprobación: 3iiiDiii]
La mayoría de los informes publicados sobre el uso de terapia de dosis altas y apoyo de células madre para pacientes de sarcoma de Ewing de riesgo alto tienen defectos metodológicos importantes. El error más común es la comparación de este grupo de riesgo alto con un grupo de control inapropiado. Los pacientes de sarcoma de Ewing con riesgo alto de fracaso del tratamiento que recibieron terapia de dosis altas se compararon con pacientes que no recibieron terapia de dosis altas. Los pacientes sometidos a terapia de dosis altas deben responder a la terapia sistémica, permanecer vivos y responder al tratamiento el tiempo suficiente como para llegar al momento en que se puedan someter a la terapia de células madre, además no pueden presentar efectos tóxicos comórbidos que impidan la terapia de dosis altas y se debe lograr una adecuada recolección de células madre. Los pacientes que se someten a terapia de dosis altas y apoyo de células madre componen un grupo altamente seleccionado; comparar este grupo de pacientes con todos los pacientes de sarcoma de Ewing de riesgo alto es inadecuado y conduce a la conclusión errónea de que esta estrategia mejora el desenlace.
Las encuestas de pacientes sometidos a trasplante de células madre (TCM) alogénico por un sarcoma de Ewing recidivante no mostraron mejora de la supervivencia sin complicaciones cuando se comparó este tratamiento con el TCM autógeno y se relacionó con una tasa más alta de complicaciones.[29,33,34]

Otras terapias

Otras terapias que se han estudiado para el tratamiento del sarcoma de Ewing recidivante son las siguientes:
  • Terapia con anticuerpos monoclonales. Se informó que los anticuerpos monoclonales contra el receptor del factor de crecimiento 1 similar a la insulina (RFCI1) producen respuestas objetivas en el sarcoma de Ewing recidivante metastásico en casi 10 % de los casos.[35-38][Grado de comprobación: 3iiDiv] En estos estudios, se indicó que el tiempo transcurrido hasta la progresión fue más prolongado cuando se comparó con controles tradicionales. Se notificaron respuestas objetivas en estudios en los que combinó el inhibidor mTOR temsirólimus con un anticuerpo RFCI1. La estratificación de la expresión de RFCI1 mediante inmunohistoquímica en uno de los estudios no pronosticó un desenlace clínico en pacientes de sarcoma de Ewing.[39,40] Se necesitan estudios adicionales a fin de identificar a los pacientes que tienen más probabilidades de beneficiarse de la terapia con RFCI1.
  • Inmunoterapia. La inmunoterapia con células T antígeno específicas está en estudio para pacientes de sarcoma de Ewing porque la destrucción mediada por esta terapia no se basa en las vías utilizadas por los tratamientos convencionales a los que estos tumores son a menudo resistentes. Varios posibles receptores de antígenos quiméricos se dirigen a antígenos que se han identificado en los sarcomas de Ewing. Estos incluyen HER2 (receptor 2 del factor de crecimiento epidérmico humano),[41] GD2,[42] CD99 (antígenos MIC2)[43] y STEAP1 (seis antígenos epiteliales transmembranarios de la próstata).[44] Algunos se están sometiendo a pruebas de fase temprana en pacientes de sarcoma.[41] El tratamiento con inhibidores de puntos de control inmunitario con un fármaco único para pacientes de sarcoma de Ewing ha demostrado una eficacia limitada.[45,46]

Opciones de tratamiento en evaluación clínica para el sarcoma de Ewing recidivante

La información en inglés sobre los ensayos clínicos patrocinados por el Instituto Nacional del Cáncer (NCI) se encuentra en el portal de Internet del NCI. Para obtener información en inglés sobre ensayos clínicos patrocinados por otras organizaciones, consultar el portal de Internet ClinicalTrials.gov.
A continuación, se presentan ejemplos de ensayos clínicos nacionales o institucionales en curso:
  • APEC1621 (NCT03155620) (Pediatric MATCH: Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders): en el NCI–Children's Oncology Group Pediatric Molecular Analysis for Therapeutic Choice (MATCH), que se conoce como Pediatric MATCH, se emparejarán fármacos de terapia dirigida con cambios moleculares específicos identificados mediante ensayo de secuenciación dirigida de última generación para más de 4000 mutaciones en más de 160 genes presentes en tumores sólidos resistentes al tratamiento o recidivantes. Los niños y adolescentes de 1 a 21 años son aptos para participar en este ensayo.
    El tejido tumoral de la enfermedad progresiva o recidivante debe estar disponible para la caracterización molecular. Se ofrecerá tratamiento del Pediatric MATCH a los pacientes con tumores de variantes moleculares comprendidas en los grupos de tratamiento del ensayo. Para obtener más información, consultar el portal de Internet del NCI y el portal de Internet ClinicalTrials.gov (en inglés).
  • ADVL1622 (NCT02867592) (Cabozantinib-S-Malate in Treating Younger Patients with Recurrent, Refractory, or Newly Diagnosed Sarcomas, Wilms Tumor, or Other Rare Tumors): este es un ensayo de fase II sin anonimato de dos etapas, de cabozantinib en tumores sólidos selectivos, incluso el sarcoma de Ewing. El cabozantinib oral es una molécula pequeña que inhibe varios receptores de tirosina cinasa, como MET, VEGFR2 y RET, que son posibles dianas terapéuticas en muchos tumores sólidos en niños y adultos.
  • ADVL1412 (NCT02304458) (Nivolumab With or Without Ipilimumab in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Sarcomas): el nivolumab es un anticuerpo anti–muerte celular programada-1 (PD-1) y un inhibidor de punto de control que está en estudio en combinación con ipilimumab para tratar a pacientes con recaída de sarcoma, incluso, pacientes de sarcoma de Ewing.
  • ADVL1615 (NCT03323034) (Pevonedistat, Irinotecan Hydrochloride, and Temozolomide in Treating Patients With Recurrent or Refractory Solid Tumors or Lymphoma): este es un estudio de fase I de pevonedistat combinado con temozolomida e irinotecán. El pevonedistat es un novedoso y primer inhibidor de la enzima activadora de Nedd8 (NAE) de su clase que bloquea la degradación de un subconjunto de proteínas que normalmente serían degradadas por el proteasoma 26S. El pevonedistat es más específico que los inhibidores del proteasoma anteriores porque bloquea la degradación de las ligasas RING de depuración selectiva y limita las dianas a solo un puñado de proteínas reguladoras clave importantes para la supervivencia celular. Se ha observado actividad antitumoral preclínica en el sarcoma de Ewing.
  • TK216-01 (NCT02657005) (TK216 in Patients With Relapsed or Refractory Ewing Sarcoma): TK216 es un fármaco novedoso que se dirige directamente a la interacción de EWSR1-FLI1 con una proteína recíproca helicasa A del ARN y, a su vez, disminuye la actividad transcripcional de la proteína de fusión EWSR1-FLI1.[47,48] Este es el primer estudio de TK216 en seres humanos para pacientes de sarcoma de Ewing. El estudio se diseñó para determinar los datos iniciales de inocuidad y eficacia, así como el potencial para continuar con su investigación.

Ensayos clínicos en curso

Realizar una búsqueda avanzada en inglés de los ensayos clínicos sobre cáncer auspiciados por el NCI que ahora aceptan pacientes. La búsqueda se puede simplificar por ubicación del ensayo, tipo de tratamiento, nombre del fármaco y otros criterios. También se dispone de información general sobre los ensayos clínicos.
Bibliografía
  1. Leavey PJ, Mascarenhas L, Marina N, et al.: Prognostic factors for patients with Ewing sarcoma (EWS) at first recurrence following multi-modality therapy: A report from the Children's Oncology Group. Pediatr Blood Cancer 51 (3): 334-8, 2008. [PUBMED Abstract]
  2. Stahl M, Ranft A, Paulussen M, et al.: Risk of recurrence and survival after relapse in patients with Ewing sarcoma. Pediatr Blood Cancer 57 (4): 549-53, 2011. [PUBMED Abstract]
  3. Wasilewski-Masker K, Liu Q, Yasui Y, et al.: Late recurrence in pediatric cancer: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst 101 (24): 1709-20, 2009. [PUBMED Abstract]
  4. Davenport JR, Vo KT, Goldsby R, et al.: Conditional Survival and Predictors of Late Death in Patients With Ewing Sarcoma. Pediatr Blood Cancer 63 (6): 1091-5, 2016. [PUBMED Abstract]
  5. Barker LM, Pendergrass TW, Sanders JE, et al.: Survival after recurrence of Ewing's sarcoma family of tumors. J Clin Oncol 23 (19): 4354-62, 2005. [PUBMED Abstract]
  6. Bacci G, Longhi A, Ferrari S, et al.: Pattern of relapse in 290 patients with nonmetastatic Ewing's sarcoma family tumors treated at a single institution with adjuvant and neoadjuvant chemotherapy between 1972 and 1999. Eur J Surg Oncol 32 (9): 974-9, 2006. [PUBMED Abstract]
  7. Ferrari S, Luksch R, Hall KS, et al.: Post-relapse survival in patients with Ewing sarcoma. Pediatr Blood Cancer 62 (6): 994-9, 2015. [PUBMED Abstract]
  8. Saylors RL 3rd, Stine KC, Sullivan J, et al.: Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a Pediatric Oncology Group phase II study. J Clin Oncol 19 (15): 3463-9, 2001. [PUBMED Abstract]
  9. McTiernan A, Driver D, Michelagnoli MP, et al.: High dose chemotherapy with bone marrow or peripheral stem cell rescue is an effective treatment option for patients with relapsed or progressive Ewing's sarcoma family of tumours. Ann Oncol 17 (8): 1301-5, 2006. [PUBMED Abstract]
  10. Hunold A, Weddeling N, Paulussen M, et al.: Topotecan and cyclophosphamide in patients with refractory or relapsed Ewing tumors. Pediatr Blood Cancer 47 (6): 795-800, 2006. [PUBMED Abstract]
  11. Wagner LM, McAllister N, Goldsby RE, et al.: Temozolomide and intravenous irinotecan for treatment of advanced Ewing sarcoma. Pediatr Blood Cancer 48 (2): 132-9, 2007. [PUBMED Abstract]
  12. Casey DA, Wexler LH, Merchant MS, et al.: Irinotecan and temozolomide for Ewing sarcoma: the Memorial Sloan-Kettering experience. Pediatr Blood Cancer 53 (6): 1029-34, 2009. [PUBMED Abstract]
  13. Raciborska A, Bilska K, Drabko K, et al.: Vincristine, irinotecan, and temozolomide in patients with relapsed and refractory Ewing sarcoma. Pediatr Blood Cancer 60 (10): 1621-5, 2013. [PUBMED Abstract]
  14. Farhat R, Raad R, Khoury NJ, et al.: Cyclophosphamide and topotecan as first-line salvage therapy in patients with relapsed ewing sarcoma at a single institution. J Pediatr Hematol Oncol 35 (5): 356-60, 2013. [PUBMED Abstract]
  15. Kebudi R, Cakir FB, Gorgun O, et al.: A modified protocol with vincristine, topotecan, and cyclophosphamide for recurrent/progressive ewing sarcoma family tumors. Pediatr Hematol Oncol 30 (3): 170-7, 2013. [PUBMED Abstract]
  16. Hernández-Marqués C, Lassaletta-Atienza A, Ruiz Hernández A, et al.: [Irinotecan plus temozolomide in refractory or relapsed pediatric solid tumors]. An Pediatr (Barc) 79 (2): 68-74, 2013. [PUBMED Abstract]
  17. McNall-Knapp RY, Williams CN, Reeves EN, et al.: Extended phase I evaluation of vincristine, irinotecan, temozolomide, and antibiotic in children with refractory solid tumors. Pediatr Blood Cancer 54 (7): 909-15, 2010. [PUBMED Abstract]
  18. Wagner LM, Perentesis JP, Reid JM, et al.: Phase I trial of two schedules of vincristine, oral irinotecan, and temozolomide (VOIT) for children with relapsed or refractory solid tumors: a Children's Oncology Group phase I consortium study. Pediatr Blood Cancer 54 (4): 538-45, 2010. [PUBMED Abstract]
  19. Wagner L, Turpin B, Nagarajan R, et al.: Pilot study of vincristine, oral irinotecan, and temozolomide (VOIT regimen) combined with bevacizumab in pediatric patients with recurrent solid tumors or brain tumors. Pediatr Blood Cancer 60 (9): 1447-51, 2013. [PUBMED Abstract]
  20. Bagatell R, Norris R, Ingle AM, et al.: Phase 1 trial of temsirolimus in combination with irinotecan and temozolomide in children, adolescents and young adults with relapsed or refractory solid tumors: a Children's Oncology Group Study. Pediatr Blood Cancer 61 (5): 833-9, 2014. [PUBMED Abstract]
  21. Kurucu N, Sari N, Ilhan IE: Irinotecan and temozolamide treatment for relapsed Ewing sarcoma: a single-center experience and review of the literature. Pediatr Hematol Oncol 32 (1): 50-9, 2015. [PUBMED Abstract]
  22. Anderson P, Kopp L, Anderson N, et al.: Novel bone cancer drugs: investigational agents and control paradigms for primary bone sarcomas (Ewing's sarcoma and osteosarcoma). Expert Opin Investig Drugs 17 (11): 1703-15, 2008. [PUBMED Abstract]
  23. Palmerini E, Jones RL, Setola E, et al.: Irinotecan and temozolomide in recurrent Ewing sarcoma: an analysis in 51 adult and pediatric patients. Acta Oncol 57 (7): 958-964, 2018. [PUBMED Abstract]
  24. Fox E, Patel S, Wathen JK, et al.: Phase II study of sequential gemcitabine followed by docetaxel for recurrent Ewing sarcoma, osteosarcoma, or unresectable or locally recurrent chondrosarcoma: results of Sarcoma Alliance for Research Through Collaboration Study 003. Oncologist 17 (3): 321, 2012. [PUBMED Abstract]
  25. Mora J, Cruz CO, Parareda A, et al.: Treatment of relapsed/refractory pediatric sarcomas with gemcitabine and docetaxel. J Pediatr Hematol Oncol 31 (10): 723-9, 2009. [PUBMED Abstract]
  26. Yoon JH, Kwon MM, Park HJ, et al.: A study of docetaxel and irinotecan in children and young adults with recurrent or refractory Ewing sarcoma family of tumors. BMC Cancer 14: 622, 2014. [PUBMED Abstract]
  27. Ferrari S, del Prever AB, Palmerini E, et al.: Response to high-dose ifosfamide in patients with advanced/recurrent Ewing sarcoma. Pediatr Blood Cancer 52 (5): 581-4, 2009. [PUBMED Abstract]
  28. Rodriguez-Galindo C, Billups CA, Kun LE, et al.: Survival after recurrence of Ewing tumors: the St Jude Children's Research Hospital experience, 1979-1999. Cancer 94 (2): 561-9, 2002. [PUBMED Abstract]
  29. Burdach S, van Kaick B, Laws HJ, et al.: Allogeneic and autologous stem-cell transplantation in advanced Ewing tumors. An update after long-term follow-up from two centers of the European Intergroup study EICESS. Stem-Cell Transplant Programs at Düsseldorf University Medical Center, Germany and St. Anna Kinderspital, Vienna, Austria. Ann Oncol 11 (11): 1451-62, 2000. [PUBMED Abstract]
  30. Burdach S, Meyer-Bahlburg A, Laws HJ, et al.: High-dose therapy for patients with primary multifocal and early relapsed Ewing's tumors: results of two consecutive regimens assessing the role of total-body irradiation. J Clin Oncol 21 (16): 3072-8, 2003. [PUBMED Abstract]
  31. Rasper M, Jabar S, Ranft A, et al.: The value of high-dose chemotherapy in patients with first relapsed Ewing sarcoma. Pediatr Blood Cancer 61 (8): 1382-6, 2014. [PUBMED Abstract]
  32. Gardner SL, Carreras J, Boudreau C, et al.: Myeloablative therapy with autologous stem cell rescue for patients with Ewing sarcoma. Bone Marrow Transplant 41 (10): 867-72, 2008. [PUBMED Abstract]
  33. Gilman AL, Oesterheld J: Myeloablative chemotherapy with autologous stem cell rescue for Ewing sarcoma. Bone Marrow Transplant 42 (11): 761; author reply 763, 2008. [PUBMED Abstract]
  34. Eapen M: Response to Dr Gilman. Bone Marrow Transplant 42 (11): 763, 2008.
  35. Malempati S, Weigel B, Ingle AM, et al.: Phase I/II trial and pharmacokinetic study of cixutumumab in pediatric patients with refractory solid tumors and Ewing sarcoma: a report from the Children's Oncology Group. J Clin Oncol 30 (3): 256-62, 2012. [PUBMED Abstract]
  36. Juergens H, Daw NC, Geoerger B, et al.: Preliminary efficacy of the anti-insulin-like growth factor type 1 receptor antibody figitumumab in patients with refractory Ewing sarcoma. J Clin Oncol 29 (34): 4534-40, 2011. [PUBMED Abstract]
  37. Pappo AS, Patel SR, Crowley J, et al.: R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research through Collaboration study. J Clin Oncol 29 (34): 4541-7, 2011. [PUBMED Abstract]
  38. Tap WD, Demetri G, Barnette P, et al.: Phase II study of ganitumab, a fully human anti-type-1 insulin-like growth factor receptor antibody, in patients with metastatic Ewing family tumors or desmoplastic small round cell tumors. J Clin Oncol 30 (15): 1849-56, 2012. [PUBMED Abstract]
  39. Naing A, LoRusso P, Fu S, et al.: Insulin growth factor-receptor (IGF-1R) antibody cixutumumab combined with the mTOR inhibitor temsirolimus in patients with refractory Ewing's sarcoma family tumors. Clin Cancer Res 18 (9): 2625-31, 2012. [PUBMED Abstract]
  40. Schwartz GK, Tap WD, Qin LX, et al.: Cixutumumab and temsirolimus for patients with bone and soft-tissue sarcoma: a multicentre, open-label, phase 2 trial. Lancet Oncol 14 (4): 371-82, 2013. [PUBMED Abstract]
  41. Ahmed N, Brawley VS, Hegde M, et al.: Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. J Clin Oncol 33 (15): 1688-96, 2015. [PUBMED Abstract]
  42. Pule MA, Savoldo B, Myers GD, et al.: Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14 (11): 1264-70, 2008. [PUBMED Abstract]
  43. Scotlandi K, Baldini N, Cerisano V, et al.: CD99 engagement: an effective therapeutic strategy for Ewing tumors. Cancer Res 60 (18): 5134-42, 2000. [PUBMED Abstract]
  44. Grunewald TG, Diebold I, Esposito I, et al.: STEAP1 is associated with the invasive and oxidative stress phenotype of Ewing tumors. Mol Cancer Res 10 (1): 52-65, 2012. [PUBMED Abstract]
  45. D'Angelo SP, Mahoney MR, Van Tine BA, et al.: Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol 19 (3): 416-426, 2018. [PUBMED Abstract]
  46. Tawbi HA, Burgess M, Bolejack V, et al.: Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol 18 (11): 1493-1501, 2017. [PUBMED Abstract]
  47. Erkizan HV, Kong Y, Merchant M, et al.: A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma. Nat Med 15 (7): 750-6, 2009. [PUBMED Abstract]
  48. Lamhamedi-Cherradi SE, Menegaz BA, Ramamoorthy V, et al.: An Oral Formulation of YK-4-279: Preclinical Efficacy and Acquired Resistance Patterns in Ewing Sarcoma. Mol Cancer Ther 14 (7): 1591-604, 2015. [PUBMED Abstract]

Modificaciones a este sumario (06/12/2019)

Los sumarios del PDQ con información sobre el cáncer se revisan con regularidad y se actualizan a medida que se obtiene nueva información. Esta sección describe los cambios más recientes introducidos en este sumario a partir de la fecha arriba indicada.
Se incorporaron cambios editoriales en este sumario.
Este sumario está redactado y mantenido por el Consejo editorial del PDQ sobre el tratamiento pediátrico, que es editorialmente independiente del NCI. El sumario refleja una revisión independiente de la bibliografía y no representa una declaración de políticas del NCI o de los NIH. Para mayor información sobre las políticas de los sumarios y la función de los consejos editoriales del PDQ que mantienen los sumarios del PDQ, consultar en Información sobre este sumario del PDQ y la página sobre Banco de datos de información de cáncer - PDQ®.

Información sobre este sumario del PDQ

Propósito de este sumario

Este sumario del PDQ con información sobre el cáncer para profesionales de la salud proporciona información integral revisada por expertos y con fundamento en datos probatorios sobre el tratamiento del sarcoma de Ewing infantil. El propósito es servir como fuente de información y ayuda para los médicos que atienden a pacientes de cáncer. No ofrece pautas ni recomendaciones formales para tomar decisiones relacionadas con la atención sanitaria.

Revisores y actualizaciones

El Consejo editorial del PDQ sobre el tratamiento pediátrico, cuya función editorial es independiente del Instituto Nacional del Cáncer (NCI), revisa con regularidad este sumario y, en caso necesario, lo actualiza. Este sumario refleja una revisión bibliográfica independiente y no constituye una declaración de la política del Instituto Nacional del Cáncer ni de los Institutos Nacionales de la Salud (NIH).
Cada mes, los miembros de este Consejo examinan artículos publicados recientemente para determinar si se deben:
  • tratar en una reunión,
  • citar textualmente, o
  • sustituir o actualizar, si ya se citaron con anterioridad.
Los cambios en los sumarios se deciden mediante consenso, una vez que los integrantes del Consejo evalúan la solidez de los datos probatorios en los artículos publicados y determinan la forma en que se incorporarán al sumario.
Los revisores principales del sumario sobre Tratamiento del sarcoma de Ewing son:
  • Holcombe Edwin Grier, MD
  • Andrea A. Hayes-Jordan, MD, FACS, FAAP (University of North Carolina - Chapel Hill School of Medicine)
  • Karen J. Marcus, MD (Dana-Farber Cancer Institute/Boston Children's Hospital)
  • Paul A. Meyers, MD (Memorial Sloan-Kettering Cancer Center)
  • Thomas A. Olson, MD (Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta - Egleston Campus)
  • Nita Louise Seibel, MD (National Cancer Institute)
Cualquier comentario o pregunta sobre el contenido de este sumario se debe enviar mediante el formulario de comunicación en Cancer.gov/espanol del NCI. No comunicarse con los miembros del Consejo para enviar preguntas o comentarios sobre los sumarios. Los miembros del Consejo no responderán a preguntas del público.

Grados de comprobación científica

En algunas referencias bibliográficas de este sumario se indica el grado de comprobación científica. El propósito de estas designaciones es ayudar al lector a evaluar la solidez de los datos probatorios que sustentan el uso de ciertas intervenciones o enfoques. El Consejo editorial del PDQ sobre el tratamiento pediátrico emplea un sistema de jerarquización formal para establecer las designaciones del grado de comprobación científica.

Permisos para el uso de este sumario

PDQ (Physician Data Query) es una marca registrada. Se autoriza el libre uso del texto de los documentos del PDQ. Sin embargo, no se podrá identificar como un sumario de información sobre cáncer del PDQ del NCI, salvo que se reproduzca en su totalidad y se actualice con regularidad. Por otra parte, se permitirá que un autor escriba una oración como “En el sumario del PDQ del NCI de información sobre la prevención del cáncer de mama se describen, en breve, los siguientes riesgos: [incluir fragmento del sumario]”.
Se sugiere citar la referencia bibliográfica de este sumario del PDQ de la siguiente forma:
PDQ® sobre el tratamiento pediátrico. PDQ Tratamiento del sarcoma de Ewing. Bethesda, MD: National Cancer Institute. Actualización: <MM/DD/YYYY>. Disponible en: https://www.cancer.gov/espanol/tipos/hueso/pro/tratamiento-ewing-pdq. Fecha de acceso: <MM/DD/YYYY>.
Las imágenes en este sumario se reproducen con el permiso del autor, el artista o la editorial para uso exclusivo en los sumarios del PDQ. La utilización de las imágenes fuera del PDQ requiere la autorización del propietario, que el Instituto Nacional del Cáncer no puede otorgar. Para obtener más información sobre el uso de las ilustraciones de este sumario o de otras imágenes relacionadas con el cáncer, consultar Visuals Online, una colección de más de 2000 imágenes científicas.

Cláusula sobre el descargo de responsabilidad

Según la solidez de los datos probatorios, las opciones de tratamiento se clasifican como “estándar” o “en evaluación clínica”. Estas clasificaciones no deben fundamentar ninguna decisión sobre reintegros de seguros. Para obtener más información sobre cobertura de seguros, consultar la página Manejo de la atención del cáncer disponible en Cancer.gov/espanol.

Para obtener más información

En Cancer.gov/espanol, se ofrece más información sobre cómo comunicarse o recibir ayuda en ¿En qué podemos ayudarle?. También se puede enviar un mensaje de correo electrónico mediante este formulario.
  • Actualización: 

No hay comentarios:

Publicar un comentario