Interventions With Adequate Evidence of a Decreased Risk of Cervical Cancer
HPV vaccination
Given the etiologic role of HPV in the pathogenesis of cervical neoplasia, vaccines to immunize against HPV infection offer a primary prevention strategy for cervical cancer. A quadrivalent (HPV-6, -11, -16, and -18) vaccine using a late protein L1 construct to induce antibody-mediated immunity was approved for use by the U.S. Food and Drug Administration in 2006; a bivalent (HPV-16, -18) vaccine was approved in 2009; and a vaccine targeting nine HPV types was approved in 2014. Vaccination during pregnancy has not been associated with adverse pregnancy outcomes.[22]
Persistent infection with oncogenic types of HPV, such as HPV-16 and HPV-18, is associated with the development of cervical cancer.[23] A vaccine to prevent HPV infection with oncogenic-type viruses has the potential to reduce the incidence of cervical cancer. A vaccine against HPV-16 using empty-viral capsids called virus-like particles (VLP) was developed and tested for efficacy in preventing persistent infection with HPV-16.
A multicenter, double-blind, placebo-controlled trial enrolled 2,391 women aged 16 to 23 years and randomly assigned them to receive either 40 µg of HPV-16 L1 VLP vaccine or placebo on day 1, at 2 months, and at 6 months. Papanicolaou (Pap) tests and genital samples for HPV-16 DNA were obtained on day 1, at 7 months, and every 6 months for 48 months. Colposcopy and cervical biopsies were obtained when clinically indicated at study exit. Serum HPV-16 antibody titers were obtained at study entry, at 7 months, and then every 6 months. A total of 1,505 women (755 receiving vaccine and 750 receiving placebo) completed all three vaccinations and had follow-up after month 7. After immunization, HPV titers peaked at month 7, declined through month 18, and then stabilized in months 30 through 48. There were no cases of CIN in the vaccine-treated women, but there were 12 cases in the placebo group (six CIN 2 and six CIN 3). HPV-16 infection that persisted for at least 4 months was seen in seven vaccine-treated women compared with 111 placebo-treated women.[24]
An international, double-blind, placebo-controlled trial of a bivalent HPV-16/HPV-18 VLP vaccine was performed in 1,113 women aged 15 to 25 years with normal cervical cytology who were seronegative for HPV-16, HPV-18, and 12 other oncogenic HPV types at enrollment. Women received either vaccine or placebo at 0, 1, and 6 months and were assessed by cervical cytology and self-obtained cervicovaginal samples for at least 18 months. A masked treatment-allocation follow-up study was performed for an additional 3 years, for a combined analysis of up to 6.4 years of follow-up. The 12-month persistent infection rate of HPV-16 or HPV-18 in an according-to-protocol cohort (i.e., women who received all three doses of vaccine or placebo on the correct schedule) was 0 of 401 women in the vaccine arm compared with 20 of 372 women in the placebo arm, with a vaccine efficacy of 100% (95% CI, 81.8–100). Diagnoses of CIN 2 or higher in a total vaccinatedcohort (i.e., women who received at least one dose of vaccine or placebo) were 0 of 481 women in the vaccine arm compared with 9 of 470 women in the placebo arm, with a vaccine efficacy of 100% (95% CI, 51.3–100). Adverse events were similar in vaccinated and placebo-treated women. Neither analysis was intention-to-treat (ITT), making it difficult to know what the true vaccine efficacy for either virological or cytohistological endpoints would be in the routine clinical setting. Furthermore, cytohistological outcomes were reported only as composite endpoints (CIN 2+), making it impossible to distinguish the vaccine’s efficacy against invasive cervical cancer alone and potentially inflating the observed efficacy by including lesions with a relatively high probability (approximately 50% for CIN 2 [25]) of spontaneous regression.[26]
A quadrivalent vaccine (HPV types-6, -11, -16, and -18) was evaluated in a multinational, double-blind, randomized controlled trial of 17,622 women aged 15 to 26 years (FUTURE I and II).[27] Women received either the HPV vaccine or placebo at 0, 2, and 6 months; participants were assessed by clinical exam, Pap test, and HPV DNA testing for 4 or more years. Two analyses were reported. One group was considered to be HPV naive: negative to 14 HPV types. The second group was an ITT analysis, which approximates a sexually active population. The composite endpoint for cervical disease included the incidence of HPV-16/HPV-18–related, CIN 2, CIN 3, adenocarcinoma in situ, or invasive carcinoma. Outcomes were reported as follows:
This study also demonstrated decreased rates of abnormal Pap tests and subsequent diagnostic procedures. No cases of invasive cervical cancer were identified during the trial.
A 9-valent VLP vaccine was studied in another international randomized trial, which included 14,215 women. This new vaccine 9vHPV includes the four HPV types in the quadrivalent vaccine, qHPV (6, 11, 16, 18) and also 5 more oncogenic types (31, 33, 45, 52, 58). Sexually active women aged 16 to 26 years with fewer than five lifetime sexual partners received three intramuscular injections (day 1, month 2, and month 6) of either the qHPV vaccine or the 9vHPV vaccine. Women were evaluated every 6 months up to 5 years. The rate of high-grade cervical, vulvar, or vaginal disease was the same in both groups (14.0 per 1,000 person-years) because of pre-existing HPV infection, but the rate of disease related to HPV-31, -35, -45, -52, and -58 was lower in the 9vHPV vaccine group (0.1 vs. 1.6 per 1,000 person-years). Injection-site reactions were more common in the 9vHPV group.[28] Although not addressed in this study, the benefit of HPV vaccination is optimal in younger females before the onset of sexual activity.
All forms of the HPV vaccine are currently recommended by the Centers for Disease Control and Prevention (CDC) in the United States as a two-dose schedule at least 6 months apart for adolescents younger than 15 years. The current CDC recommendation for older individuals is to receive the original three-dose series. Recently, given issues of cost and adherence, there has been published data investigating whether similar vaccine efficacy could be obtainable using a reduced-dose schedule. A post hoc combined analysis of two phase III randomized controlled trials of the bivalent HPV vaccine (the Costa Rica Vaccine Trial and the PApilloma TRIal against Cancer In young Adults [PATRICIA] Trial) found that among women who were not HPV positive at enrollment for the specific virus type being studied, vaccine efficacy against either one-time incident detection of HPV 16/18 or incident infection that persisted at least 6 months was not statistically significantly different for those who received all three, two, or only one of the scheduled HPV vaccine doses (resulting from nonadherence or other factors) for up to 4 years of follow-up. Vaccine efficacy rates for persistent HPV 16/18 infection ranged from 89.1% (95% CI, 86.8%–91.0%) for three doses, to 89.7% (95% CI, 73.3%–99.8%) for two doses, to 96.6% (95% CI, 81.7%–99.8%) for one dose. To date, there are no randomized controlled trials that directly assess this clinical question.[29] A recent international study compared a two-dose schedule with a three-dose schedule in adolescents younger than 15 years who received the 9-valent HPV vaccine. The antibody response was noninferior in the two-dose schedule, supporting the current recommendation that two doses are sufficient for this age group.[30]
On the basis of their mechanism of action, L1/2 HPV vaccines do not appear to impact pre-existing infections. The FUTURE II trial demonstrated a markedly lower vaccine efficacy rate in the total randomized study population, which included individuals who were positive for HPV at baseline, compared with the per-protocol population (44% for lesions associated with HPV-16 or HPV-18, and 17% for lesions associated with any HPV type vs. 98%; refer to Table 1 above).[27] Additionally, an intermediate analysis of a randomized controlled trial primarily evaluating the efficacy of the HPV-16/18 vaccine in preventing infection found no effect on viral clearance rates in women aged 18 to 25 years who were positive at the time of study enrollment.[31]
The type-specific vaccines, if successful in preventing invasive cancer, will offer protection for only a subset of cases, the proportion of which will vary worldwide.[32] Using data from a multicenter case-control study conducted in 25 countries, it was estimated that a vaccine containing the seven most common HPV types could prevent 87% of cervical cancers worldwide. A vaccine with the two most common strains, HPV-16 and HPV-18, would prevent 71% of cervical cancers worldwide.[32]
A study of cervical HPV DNA among 202 Australian women aged 18 to 24 years who were sampled between 2005 and 2007 before implementation of a national quadrivalent prophylactic HPV vaccine program compared the results with a matched group of 1,058 women who were sampled in the postvaccination era (2010–2012). This study found an adjusted prevalence ratio among fully vaccinated women of 0.07 (95% CI, 0.04–0.14; P < .0001) for vaccine-related HPV types and a smaller but statistically significant magnitude of protection of 0.65 (95% CI, 0.43–0.96; P < .03) among unvaccinated women, suggesting herd immunity (protection of unvaccinated individuals).[33] These data strengthen previous results that suggest herd immunity in this population manifested as a reduction in genital warts among heterosexual men, a group that includes sexual partners of vaccinated women.[34] Data also suggest cross protection against carcinogenic types that are not directly targeted by the quadrivalent vaccine but are included in the new nonvalent HPV vaccine.[33]
There are data that explore the impact of national HPV vaccination programs and report on vaccine effectiveness. In England, 15,459 residual genital specimens from women aged 16 to 24 years, collected for chlamydia screening between 2010 and 2016, were utilized for national HPV surveillance.[35] In this study, vaccine effectiveness for HPV-16/HPV-18 was 82% (95% CI, 60.6%–91.8%) for women who were vaccinated before age 15 years. Within the younger age groups, the prevalence of HPV-16/HPV-18 significantly decreased within the postvaccination period between 2010 and 2011 to 2016 from 8.2% to 1.6% in 16 to 18 year olds and from 14.0% to 1.6% in 19 to 21 year olds (compared with 17.6% and 16.9% in the prevaccination era).[35]
Use of barrier method during sexual intercourse
Barrier methods of contraception are associated with a reduced incidence of SIL presumptively secondary to protection from sexually transmitted disease.[36,37] The effectiveness of condom use for the prevention of HPV infections has been evaluated in a prospective study of women aged 18 to 22 years who were virgins.[38] The number of vulvovaginal HPV infections was reduced with consistent condom use, and HPV infection rate was 37.8 infections per 100 patient-years among women whose partners used condoms 100% of the time in the 8 months before testing, compared with 89.3 infections per 100 patient-years among women whose partners used condoms less than 5% of the time (P trend = .005). No cervical SIL were detected among women reporting 100% condom use by their partner.[38]
References
- American Cancer Society: Cancer Facts and Figures 2019. Atlanta, Ga: American Cancer Society, 2019. Available online. Last accessed January 23, 2019.
- Beavis AL, Gravitt PE, Rositch AF: Hysterectomy-corrected cervical cancer mortality rates reveal a larger racial disparity in the United States. Cancer 123 (6): 1044-1050, 2017. [PUBMED Abstract]
- Holowaty P, Miller AB, Rohan T, et al.: Natural history of dysplasia of the uterine cervix. J Natl Cancer Inst 91 (3): 252-8, 1999. [PUBMED Abstract]
- Brinton LA: Epidemiology of cervical cancer--overview. IARC Sci Publ (119): 3-23, 1992. [PUBMED Abstract]
- Schiffman M, Castle PE, Jeronimo J, et al.: Human papillomavirus and cervical cancer. Lancet 370 (9590): 890-907, 2007. [PUBMED Abstract]
- Trottier H, Franco EL: The epidemiology of genital human papillomavirus infection. Vaccine 24 (Suppl 1): S1-15, 2006. [PUBMED Abstract]
- Ault KA: Epidemiology and natural history of human papillomavirus infections in the female genital tract. Infect Dis Obstet Gynecol 2006 (Suppl): 40470, 2006. [PUBMED Abstract]
- Herrero R, Hildesheim A, Bratti C, et al.: Population-based study of human papillomavirus infection and cervical neoplasia in rural Costa Rica. J Natl Cancer Inst 92 (6): 464-74, 2000. [PUBMED Abstract]
- Abraham AG, D'Souza G, Jing Y, et al.: Invasive cervical cancer risk among HIV-infected women: a North American multicohort collaboration prospective study. J Acquir Immune Defic Syndr 62 (4): 405-13, 2013. [PUBMED Abstract]
- Grulich AE, van Leeuwen MT, Falster MO, et al.: Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370 (9581): 59-67, 2007. [PUBMED Abstract]
- Berrington de González A, Green J; International Collaboration of Epidemiological Studies of Cervical Cancer: Comparison of risk factors for invasive squamous cell carcinoma and adenocarcinoma of the cervix: collaborative reanalysis of individual data on 8,097 women with squamous cell carcinoma and 1,374 women with adenocarcinoma from 12 epidemiological studies. Int J Cancer 120 (4): 885-91, 2007. [PUBMED Abstract]
- International Collaboration of Epidemiological Studies of Cervical Cancer: Cervical carcinoma and reproductive factors: collaborative reanalysis of individual data on 16,563 women with cervical carcinoma and 33,542 women without cervical carcinoma from 25 epidemiological studies. Int J Cancer 119 (5): 1108-24, 2006. [PUBMED Abstract]
- Moreno V, Bosch FX, Muñoz N, et al.: Effect of oral contraceptives on risk of cervical cancer in women with human papillomavirus infection: the IARC multicentric case-control study. Lancet 359 (9312): 1085-92, 2002. [PUBMED Abstract]
- Appleby P, Beral V, Berrington de González A, et al.: Cervical cancer and hormonal contraceptives: collaborative reanalysis of individual data for 16,573 women with cervical cancer and 35,509 women without cervical cancer from 24 epidemiological studies. Lancet 370 (9599): 1609-21, 2007. [PUBMED Abstract]
- Hellberg D, Nilsson S, Haley NJ, et al.: Smoking and cervical intraepithelial neoplasia: nicotine and cotinine in serum and cervical mucus in smokers and nonsmokers. Am J Obstet Gynecol 158 (4): 910-3, 1988. [PUBMED Abstract]
- Brock KE, MacLennan R, Brinton LA, et al.: Smoking and infectious agents and risk of in situ cervical cancer in Sydney, Australia. Cancer Res 49 (17): 4925-8, 1989. [PUBMED Abstract]
- Ho GY, Kadish AS, Burk RD, et al.: HPV 16 and cigarette smoking as risk factors for high-grade cervical intra-epithelial neoplasia. Int J Cancer 78 (3): 281-5, 1998. [PUBMED Abstract]
- Plummer M, Herrero R, Franceschi S, et al.: Smoking and cervical cancer: pooled analysis of the IARC multi-centric case--control study. Cancer Causes Control 14 (9): 805-14, 2003. [PUBMED Abstract]
- Verloop J, van Leeuwen FE, Helmerhorst TJ, et al.: Cancer risk in DES daughters. Cancer Causes Control 21 (7): 999-1007, 2010. [PUBMED Abstract]
- Hoover RN, Hyer M, Pfeiffer RM, et al.: Adverse health outcomes in women exposed in utero to diethylstilbestrol. N Engl J Med 365 (14): 1304-14, 2011. [PUBMED Abstract]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Human papillomaviruses. IARC Monogr Eval Carcinog Risks Hum 100 (Pt B), 255-313, 2012. Available online. Last accessed February 1, 2019.
- Scheller NM, Pasternak B, Mølgaard-Nielsen D, et al.: Quadrivalent HPV Vaccination and the Risk of Adverse Pregnancy Outcomes. N Engl J Med 376 (13): 1223-1233, 2017. [PUBMED Abstract]
- Wallin KL, Wiklund F, Angström T, et al.: Type-specific persistence of human papillomavirus DNA before the development of invasive cervical cancer. N Engl J Med 341 (22): 1633-8, 1999. [PUBMED Abstract]
- Mao C, Koutsky LA, Ault KA, et al.: Efficacy of human papillomavirus-16 vaccine to prevent cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 107 (1): 18-27, 2006. [PUBMED Abstract]
- Castle PE, Schiffman M, Wheeler CM, et al.: Evidence for frequent regression of cervical intraepithelial neoplasia-grade 2. Obstet Gynecol 113 (1): 18-25, 2009. [PUBMED Abstract]
- Romanowski B, de Borba PC, Naud PS, et al.: Sustained efficacy and immunogenicity of the human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine: analysis of a randomised placebo-controlled trial up to 6.4 years. Lancet 374 (9706): 1975-85, 2009. [PUBMED Abstract]
- FUTURE II Study Group: Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med 356 (19): 1915-27, 2007. [PUBMED Abstract]
- Joura EA, Giuliano AR, Iversen OE, et al.: A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med 372 (8): 711-23, 2015. [PUBMED Abstract]
- Kreimer AR, Struyf F, Del Rosario-Raymundo MR, et al.: Efficacy of fewer than three doses of an HPV-16/18 AS04-adjuvanted vaccine: combined analysis of data from the Costa Rica Vaccine and PATRICIA trials. Lancet Oncol 16 (7): 775-86, 2015. [PUBMED Abstract]
- Iversen OE, Miranda MJ, Ulied A, et al.: Immunogenicity of the 9-Valent HPV Vaccine Using 2-Dose Regimens in Girls and Boys vs a 3-Dose Regimen in Women. JAMA 316 (22): 2411-2421, 2016. [PUBMED Abstract]
- Hildesheim A, Herrero R, Wacholder S, et al.: Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. JAMA 298 (7): 743-53, 2007. [PUBMED Abstract]
- Muñoz N, Bosch FX, Castellsagué X, et al.: Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int J Cancer 111 (2): 278-85, 2004. [PUBMED Abstract]
- Tabrizi SN, Brotherton JM, Kaldor JM, et al.: Assessment of herd immunity and cross-protection after a human papillomavirus vaccination programme in Australia: a repeat cross-sectional study. Lancet Infect Dis 14 (10): 958-66, 2014. [PUBMED Abstract]
- Donovan B, Franklin N, Guy R, et al.: Quadrivalent human papillomavirus vaccination and trends in genital warts in Australia: analysis of national sentinel surveillance data. Lancet Infect Dis 11 (1): 39-44, 2011. [PUBMED Abstract]
- Mesher D, Panwar K, Thomas SL, et al.: The Impact of the National HPV Vaccination Program in England Using the Bivalent HPV Vaccine: Surveillance of Type-Specific HPV in Young Females, 2010-2016. J Infect Dis 218 (6): 911-921, 2018. [PUBMED Abstract]
- Parazzini F, Negri E, La Vecchia C, et al.: Barrier methods of contraception and the risk of cervical neoplasia. Contraception 40 (5): 519-30, 1989. [PUBMED Abstract]
- Hildesheim A, Brinton LA, Mallin K, et al.: Barrier and spermicidal contraceptive methods and risk of invasive cervical cancer. Epidemiology 1 (4): 266-72, 1990. [PUBMED Abstract]
- Winer RL, Hughes JP, Feng Q, et al.: Condom use and the risk of genital human papillomavirus infection in young women. N Engl J Med 354 (25): 2645-54, 2006. [PUBMED Abstract]
No hay comentarios:
Publicar un comentario