martes, 13 de junio de 2017

La flexibilidad mecánica de los virus favorece su ensamblaje espontáneo - JANO.es - ELSEVIER

La flexibilidad mecánica de los virus favorece su ensamblaje espontáneo - JANO.es - ELSEVIER



PUBLICADO EN 'JOURNAL OF THE AMERICAN CHEMICAL SOCIETY'

La flexibilidad mecánica de los virus favorece su ensamblaje espontáneo

JANO.es · 12 junio 2017 14:01
Investigadores de la Universidad Autónoma de Madrid y el Centro de Biología Molecular Severo Ochoa describen la cadena de montaje espontáneo de un virus y detallan el papel que desempeña la flexibilidad mecánica en el proceso.
Un grupo de investigación de la Universidad Autónoma de Madrid (UAM) y del Centro de Biología Molecular Severo Ochoa (CBMSO), dirigido por Mauricio G. Mateu, ha publicado recientemente dos trabajos en los campos de la biofísica y las nanociencias que aportan nuevos conocimientos sobre las conexiones entre las propiedades mecánicas y el funcionamiento biológico de los virus. 
En el primer trabajo, publicado en The Journal of the American Chemical Society, la investigadora predoctoral María Medrano utilizó, con ayuda de otros miembros del grupo, técnicas de microscopía de fuerzas atómicas y microscopía electrónica para observar la manera en la que las piezas de la cápsida de un virus diminuto de ratón (MVM, por sus siglas en inglés) se van uniendo espontáneamente entre sí.
En el segundo trabajo, publicado en ACS Nano, Pablo J. Pérez Carrillo y otros miembros del mismo grupo usaron técnicas de ingeniería de proteínas para realizar individualmente muchas pequeñas modificaciones en las piezas que se autoensamblan para formar el virus MVM, alterando las interacciones que se establecen entre ellas.
“Estos trabajos sugieren que la cápsida de MVM ha evolucionado hacia la minimización de su rigidez mecánica. Para ello, ha adaptado la estructura fina de sus piezas y las interacciones que estas establecen. Esta mínima rigidez mecánica, o máxima flexibilidad, parece contribuir a una mayor eficacia en el ensamblaje espontáneo de estas piezas para formar la cápsida completa del virus”, afirma Mateu, que es profesor del departamento de Biología Molecular de la UAM.    
De acuerdo con los autores, estos resultados favorecen el diseño de fármacos antivirales que inhiban el autoensamblaje de virus, o que degraden las propiedades mecánicas que ayudan a su supervivencia. Los trabajos también podrían contribuir al diseño de nanopartículas y nanomateriales capaces de autoensamblarse eficazmente, y con propiedades mecánicas adecuadas para aplicaciones que van desde la nanomedicina a la nanoelectrónica.
Nanomáquinas moleculares
Para construir una máquina (un automóvil en una cadena de montaje, por ejemplo), además de las piezas que van a ser ensambladas, se requieren otros elementos, como otras máquinas, energía, operarios e instrucciones. Los virus son máquinas naturales diminutas –nanomáquinas moleculares–, pero a diferencia de nuestras máquinas, las piezas que constituyen los virus más sencillos son capaces de ensamblarse espontáneamente, sin ayuda externa. Para ello siguen instrucciones originalmente contenidas en su material genético, e implementadas en las propias estructuras de sus "piezas" (moléculas de proteínas y ácido nucleico vírico) que se autoensamblan a favor del gradiente de energía.
Siguiendo con el símil del automóvil, el ingeniero diseña la carrocería monocasco de manera que tenga algunas partes más rígidas y otras más flexibles, de modo que el automóvil mantenga su integridad durante la circulación en condiciones de fuerte estrés mecánico, pero que, en caso de colisión, se deforme del modo más adecuado para minimizar daños a los ocupantes.
Como muestran las recientes investigaciones del grupo que dirige Mauricio G. Mateu, las piezas que forman los virus y la manera en que se autoensamblan han sido "adaptadas" por la selección natural, de modo que confieren el adecuado grado de rigidez mecánica a algunas partes del virus, y de flexibilidad a otras partes. De este modo, el virus puede resistir el estrés físico o químico sin dejar de funcionar adecuadamente.

Noticias relacionadas

06 Jun 2017 - Actualidad

Aportan nuevos datos acerca de cómo el zika provoca microcefalia en bebés

Un estudio identifica cómo el virus utiliza las proteínas MSI1 para su propio ciclo de destructivo.
01 Jun 2017 - Actualidad

Describenla maquinaria que permite a los virus que afectan a bacterias multiplicarse

Científicos del Centro Nacional de Biotecnología del CSIC, demuestran que las proteínas Sak y Sak4 son esenciales para la replicación del ADN de los fagos clínicamente relevantes.
30 May 2017 - Actualidad

Desarrollan una prueba que permite detectar VIH oculto

El estudio también ha revelado que la cantidad de virus que acecha latente en personas que parecen estar casi curadas del VIH es unas 70 veces mayor de lo que se creía.

No hay comentarios:

Publicar un comentario