martes, 11 de octubre de 2016

Aspectos generales de los exámenes de detección del cáncer (PDQ®)—Versión para profesionales de salud - National Cancer Institute

Aspectos generales de los exámenes de detección del cáncer (PDQ®)—Versión para profesionales de salud - National Cancer Institute





Instituto Nacional Del Cáncer



Aspectos generales de los exámenes de detección del cáncer (PDQ®)–Versión para profesionales de salud





SECCIONES



Exámenes de detección del cáncer

Incidencia del cáncer y mortalidad

En 2016, se calcula que aproximadamente 1 685 210 personas en los Estados Unidos serán diagnosticadas con cáncer y que 595 690 morirán a raíz de esta enfermedad.[1] Los cálculos de las muertes prematuras que se podrían haber evitado mediante la detección oscilan entre 3 y 35 %, según hipótesis variadas. Más allá de la posibilidad de evitar la muerte, los exámenes de detección pueden reducir la morbilidad por cáncer, dado que el tratamiento del cáncer en estadios tempranos suele ser menos invasivo que el de los cánceres en estadios más avanzados.
Se deben tener en cuenta varios perjuicios posibles contra todo beneficio eventual de los exámenes de detección del cáncer.[2] Si bien gran parte de los exámenes de detección del cáncer no son invasivos o son mínimamente invasivos, algunos presentan pequeños riesgos de complicaciones graves que pueden ser inmediatos (por ejemplo, una perforación durante la colonoscopia) o demorados (por ejemplo, posible carcinogenia por la radiación). Otro perjuicio es el resultado positivo falso de una prueba, que puede generar ansiedad y dar lugar a procedimientos diagnósticos invasivos e innecesarios. Estos procedimientos diagnósticos invasivos suponen riesgos de complicaciones graves. Un perjuicio menos conocido es el sobrediagnóstico; es decir, el diagnóstico de una afección que no hubiera tenido importancia clínica de no haberse identificado en los exámenes de detección. Este perjuicio se está volviendo más común con el aumento de la sensibilidad de los exámenes de detección para identificar tumores diminutos. Por último, un examen de detección con resultado negativo falso puede tranquilizar erróneamente a un individuo con signos o síntomas clínicos subsiguientes de cáncer y, como consecuencia, demorar en realidad un diagnóstico y tratamiento eficaz.
En una publicación de 2009 de resultados preliminares de un proyecto sobre exámenes de detección del cáncer en Japón mediante el uso de varias tecnologías de detección de cuerpo completo, se ilustran claramente los problemas de los resultados positivos falsos de los exámenes de detección y del eventual sobrediagnóstico.[3]
En el proyecto se inscribieron 1217 voluntarios sanos, de 35 años y más, entre agosto de 2003 y julio de 2004. Los voluntarios eran empleados de Hamamatsu Photonics K.K. y empresas afiliadas en el Japón. Los participantes se inscribieron en un programa de seguro médico empresarial y la mayoría se sometió a controles anuales obligatorios de salud durante muchos años, que incluían radiografía de tórax, prueba de sangre oculta en la materia fecal (FOBT), series del aparato digestivo superior y mamografía como exámenes de detección. Se excluyó a 20 candidatos con antecedentes de cáncer, con lo cual quedaron 1197 participantes para la evaluación. Todos los participantes se podían considerar con bajo riesgo de cáncer identificado con exámenes de detección.[3]
Se ofreció a todos los participantes someterse un examen de detección anual de cuerpo completo por medio de una tomografía por emisión de positrones con fluorodesoxiglucosa, tomografía computada de tórax y abdomen, imágenes por resonancia magnética (IRM) del cerebro y la pelvis, análisis de marcadores tumorales séricos, como el antígeno carcinoembrionario, el antígeno oncológico 19-9 (CA19-9), el antígeno del carcinoma de células escamosas, el antígeno prostático específico para varones mayores de 50 años de edad, el antígeno del cáncer 125 (CA-125) para las mujeres y FOBT.
Se estandarizaron clasificaciones específicas de importancia clínica para todos los resultados de los análisis y las pruebas de diagnóstico por imágenes se leyeron independientemente tres veces, con resolución por unanimidad (consultar los detalles en [3]). El resultado del examen de detección se clasificó como positivo si alguna prueba indicaba alguna neoplasia maligna y, en tal caso, los sujetos se derivaron a un hospital local para la administración de otras pruebas o la repetición de la prueba en el centro de detección. Los episodios de cáncer en los intervalos se verificaron mediante entrevistas o exámenes de detección posteriores.[3]
Veintidós cánceres primarios se confirmaron mediante patología, 19 mediante exámenes de detección anuales y 18 durante el examen de detección inicial. Se notificó que la sensibilidad general del análisis de cuerpo completo con multiplicidad de pruebas fue de 81,8 %, con una especificidad de 70,6 % (índice de positivos falsos 29,4 %) cuando se consideró que los resultados indicaban una neoplasia maligna o el cáncer no se pudo descartar definitivamente y 68,2 vs. 87,4 %, respectivamente, para la clasificación del examen de detección más restrictivo de una neoplasia maligna únicamente.
La incidencia de cánceres identificados en el examen de detección inicial superó de 3 a 4 veces la incidencia de cáncer anual calculada según la edad en el Japón. Se sabía que varios cánceres identificados durante exámenes de detección eran poco activos y podrían ser inocuos durante un largo tiempo sin afectar a la mortalidad por cáncer.[3]
También se determinaron los posibles perjuicios de la repetición de programas multimodales de detección del cáncer utilizando los datos del grupo de intervención del Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial que fue controlado y aleatorizado. Se realizó el examen de detección a un total de 68 436 participantes para tres cánceres, según el sexo, utilizando el antígeno prostático específico (APE), tacto rectal, ecografía transvaginal, CA-125 sérico, radiografía de tórax o sigmoidoscopia flexible, o todos. En el estudio se determinó que al cabo de cuatro exámenes de detección (realizados en el período de un día en el ensayo), la probabilidad acumulada de que un individuo recibiera al menos un resultado positivo falso fue de 37 % para los hombres y 26 % para las mujeres. Al cabo de 14 pruebas (o 3 años de detección), la probabilidad se elevó a 60 % para los hombres y 49 % para las mujeres, mientras que la probabilidad acumulada de someterse a un procedimiento invasivo como resultado directo de un examen positivo falso fue de 29 % para los hombres y 22 % para las mujeres.[4]
Los perjuicios de los exámenes de detección son motivo de especial preocupación en el caso del sobrediagnóstico, dado que el individuo, por definición, no puede obtener ningún beneficio posible de la detección, pero puede sufrir los efectos adversos relacionados, como tratamientos innecesarios. El sobrediagnóstico se puede manifestar de dos maneras: 1) la detección de una lesión que, en esencia, no tiene potencial maligno (algunas veces llamada “pseudoenfermedad”); y 2) la detección de una lesión que crece de forma suficientemente lenta como para que el individuo muera por otra causa. De este modo, el uso de los exámenes de detección en individuos con una expectativa de vida limitada puede ser una causa importante de sobrediagnóstico. Los estudios de modelos de práctica actual en los Estados Unidos mostraron una utilización considerable de exámenes de detección del cáncer en situaciones en las que la probabilidad de sobrediagnóstico es alta y el beneficio muy bajo. Por ejemplo, los investigadores vincularon los datos del registro de cáncer Surveillance, Epidemiology, and End Results (SEER) de reclamos presentados a Medicare, a fin de evaluar el uso de los exámenes de detección del cáncer en personas de 65 años y más con un diagnóstico conocido de cáncer avanzado (como cáncer de pulmón en estadios IIIB a IV, cáncer colorrectal en estadio IV, cáncer gastroesofágico en estadio IV, cáncer de mama en estadio IV y cáncer de páncreas en estadio avanzado). Se encontró que 9 % de las mujeres con diagnósticos establecidos de cáncer avanzado se sometieron a exámenes de detección con mamografía y 6 % a frotis de Papanicolaou de rutina; 15 % de los hombres con diagnóstico establecido de cáncer avanzado todavía se sometieron a los exámenes de detección con el antígeno prostático específico (APE). El factor pronóstico individual más sólido de la detección en el entorno del cáncer avanzado fueron los antecedentes de detección recientes antes del diagnóstico.[5]
Hay una relación entre el diagnóstico de cáncer y el comportamiento suicida (ya sea consumado o intentado) en el primer año después del diagnóstico. Esta relación se observó tanto en adultos como en personas jóvenes, con un riesgo relativo (RR), que oscila entre 1,6 y 2,0.[6,7]
Hay una relación entre el diagnóstico de cáncer y la conducta suicida (ya sea intentos o consumados) en el primer año luego del diagnóstico. Esta relación se ha observado tanto en adultos como en personas jóvenes, con un riesgo relativo de 1,6 a 2,0.[6,7]
En la redacción de los sumarios sobre los exámenes de detección del cáncer, el Consejo Editorial sobre Exámenes de Detección y Prevención de PDQ utiliza las siguientes definiciones:
  • Los exámenes de detección son un medio utilizado para descubrir temprano una enfermedad en personas asintomáticas.
  • Los resultados positivos de los exámenes, las pruebas o los procedimientos utilizados en la detección no son habitualmente diagnósticos, pero identifican a personas con un aumento de riesgo de presentar cáncer en quienes se justifica una evaluación adicional.
  • El diagnóstico es la confirmación de la enfermedad por biopsia o examen tisular en las pruebas posteriores a los resultados positivos de los exámenes de detección. (Después de un resultado positivo en el examen de detección, a menudo se puede descartar el cáncer mediante procedimientos distintos a la biopsia o el examen tisular).
El propósito del presente sumario es presentar un enfoque científico explícito con base en datos probatorios que se utiliza para la redacción de los sumarios sobre los exámenes de detección. En las conclusiones, se sopesan tanto los riesgos como los beneficios. Sin embargo, no se tienen en cuenta los costos ni la eficacia en función de los costos. Asimismo, se aborda la asignación de grados de comprobación relacionados con tales exámenes de detección.
Por su diseño, el PDQ no publica directrices de práctica clínica. Aunque muchas organizaciones de salud pública presentan directrices para la atención de la salud y actividades de detección , la calidad de estas directrices varía ampliamente,[8] en parte porque se basan en opiniones y dependen de las revisiones sistemáticas de los datos probatorios que son de calidad variable. Las mejores directrices, evaluadas mediante la Appraisal of Guidelines for Research and Evaluation (AGREE) son aquellas basadas en las mejores revisiones sistemáticas de Assessment of Multiple Systematic Reviews (AMSTAR).

Toma de decisiones médicas bien fundadas y compartidas

Las directrices para los exámenes de detección, cada vez más mencionan la importancia de que los individuos tomen decisiones con conocimiento de causa sobre cómo participar de la detección y a la vez compartir la toma de decisiones. La información objetiva y equilibrada sobre los beneficios y perjuicios potenciales de la prevención, la detección y el tratamiento desempeña una función importante para que el paciente tome una decisión bien sopesada.
En una encuesta nacional sobre las decisiones que se toman con conocimiento de causa durante las conversaciones entre el proveedor de salud y el paciente, sobre los exámenes de detección de cáncer colorrectal, mama y próstata, los pacientes se consideraron a sí mismos como bien informados pero con frecuencia no tenían conocimiento sobre los riesgos y beneficios de los exámenes de detección. Los pacientes relataron que por lo general no les preguntaban sobre sus preferencias en cuanto al examen de detección de cáncer; y si bien 90 % de las conversaciones abordaban los pros del examen de detección, 30 % o menos abordaban los contra de estos exámenes.[9]
En muchas de las decisiones sobre la detección, se indica compartir la decisión, ya que el proveedor ayuda al paciente a escoger opciones inteligentes fundamentadas en los valores entre dos o más alternativas médicamente razonables.[10,11] Esto es de suma importancia cuando los exámenes de detección presentan perjuicios potenciales y beneficios limitados. Hay tres componentes de la toma de decisiones compartidas:[12]
  1. El proveedor comparte información sobre las opciones de detección fundamentadas en las pruebas en lo relativo a beneficios, perjuicios e incertidumbres.
  2. El paciente comparte sus preferencias con el proveedor, quien ayuda al paciente a evaluar estas opciones y preferencias y tomar la decisión.
  3. El proveedor ayuda en la documentación y ejecución de las preferencias del paciente.
Los diferentes medios de ayuda al paciente pueden ser útiles para proveer información y ayudar al paciente a tomar una decisión. Estos alientan al paciente a interpretar las pruebas en el contexto de sus propias metas y preocupaciones. Los métodos audiovisuales que ayudan en las decisiones están disponibles en diferentes formatos, como panfletos, folletos, videos y páginas web. Algunos de estos medios incluyen historietas o relatos de pacientes. Diversos pacientes podrían preferir un formato en particular en vez de otro. La mayoría de los formatos alientan al paciente a que tome sus decisiones contando con la ayuda de su médico. El International Patient Decision Aid Standards (IPDAS) Collaboration ha elaborado un método que evalúa la calidad del método de ayuda en la toma de decisiones.[13]
Una revisión de Cochrane de 115 ensayos aleatorizados controlados sobre la toma de decisiones compartidas con la ayuda de un método audiovisual se indicó que, en general, estos métodos mejoran los conocimientos del paciente sobre opciones y riesgos; reducen los conflictos al tomar decisiones por sentirse desinformado o confuso sobre los valores personales; y estimula a los pacientes a participar más activamente en la toma de decisiones. Se ha notado que en algunos casos, estos métodos audiovisuales reducen el número de pacientes que eligen una operación importante electiva e invasiva en vez de otras opciones más conservadoras, y menos pacientes que eligen exámenes de detección del cáncer. El efecto de usar métodos audiovisuales en el transcurso de la consulta varía, y va desde acortar el tiempo de la consulta a ningún cambio o a prolongar el tiempo de la consulta.[14]
Luego de usar un método audiovisual para la toma de decisiones que incluía información en cuanto a la sobredetección de cáncer de mama, más mujeres tomaron una decisión con conocimiento de causa de si debían examinarse, y cumplieron con los requisitos de un conocimiento general adecuado. Al comparárseles con el grupo de control cuyos métodos de ayuda no contenían información sobre la detección, menos mujeres expresaron actitudes positivas hacia la detección o tuvieron la intención de someterse al análisis en un futuro.[15] Las personas mejores informadas podrían tener menos tendencia a participar en un examen de detección del cáncer.

Redacción de los sumarios

Los sumarios sobre los exámenes de detección del cáncer se basan en varios niveles de datos probatorios científicos publicados y en la experiencia clínica colectiva. Se considera que el grado más alto de comprobación es la reducción de la mortalidad en estudios o ensayos clínicos controlados aleatorizados. En la redacción de los sumarios, también se tienen en cuenta los resultados de estudios clínicos, estudios de casos y controles, estudios de cohortes y otra información. Además, se considera la incidencia del cáncer, la distribución de los estadios, el tratamiento y las tasas de mortalidad. Los sumarios están sujetos a modificaciones a medida que se dispone de nuevos datos probatorios.

Fundamento científico

Para que el examen de detección sea eficaz, se deben satisfacer por lo menos dos requisitos:
  1. Se debe contar con una prueba o procedimiento para detectar los cánceres antes de que se detectara el cáncer como resultado de la aparición de síntomas.
  2. Se debe probar que el tratamiento iniciado previamente como consecuencia del examen de detección produce un mejor desenlace.
Estos requisitos son necesarios, pero no suficientes, para probar la eficacia del examen de detección, que exige una disminución de la mortalidad por causas específicas. Por ejemplo, estos dos criterios se satisfacen en el caso del examen de detección para el neuroblastoma infantil mediante evaluación de los metabolitos de las catecolaminas urinarias. Sobre la base de estos criterios, se realizó un programa de detección en masa en la Prefectura de Saitama, en el Japón, entre 1981 y 1992 para lactantes de 6 meses de edad.[16] Durante ese período de 12 años, la incidencia anual del neuroblastoma en niños menores de 1 año de edad aumentó de aproximadamente 28 por millón a 260 por millón, pero sin una reducción significativa en la incidencia en los niños mayores de 1 año de edad. Debido a la falta de reducción de la mortalidad por la enfermedad, esta experiencia ofreció pruebas contundentes de sobrediagnóstico: el diagnóstico de algunos neuroblastomas identificables por medio de detección que no se habrían diagnosticado más adelante. En otras partes del Japón [17] y en el Quebec Neuroblastoma Screening Project (QNSP) en Canadá, se notificaron experiencias similares.[18] La historia del examen de detección de neuroblastomas también proporcionan una ilustración útil del beneficio de realizar evaluaciones bien diseñadas de las tecnologías emergentes de exámenes de detección antes de poner en marcha programas de detección. Si bien tales estudios son muy costosos, se demostró que el QNSP mismo evitó una morbilidad innecesaria para miles de niños, al tiempo que tuvo un rendimiento calculado dentro de límites razonables de ahorro de costos de 64,5 veces en relación con la inversión en el estudio.[19]

Detección

La observación visual directa o asistida con instrumentos es el examen más ampliamente disponible para la detección del cáncer. Es útil para identificar lesiones sospechosas en la piel, la retina, los labios, la boca, la laringe, los genitales externos y el cuello uterino.
El segundo procedimiento de detección más común es la palpación para detectar bultos, nódulos o tumores en la mama, la boca, las glándulas salivales, la tiroides, los tejidos subcutáneos, el ano, el recto, la próstata, los testículos, los ovarios y el útero, así como los ganglios linfáticos agrandados en el cuello, la axila o la ingle.
Para los cánceres internos, se necesitan procedimientos y pruebas como endoscopias, radiografías, IRM o ecografías. En la detección de cánceres específicos se han empleado análisis de laboratorio, como el frotis de Papanicolaou o la FOBT.
El rendimiento de las pruebas de detección se suele medir en términos de la sensibilidad, la especificidad y los valores pronósticos de un resultado positivo (VPP) y los valores pronósticos de un resultado negativo (VPN). La sensibilidad es la probabilidad de que una persona con cáncer tenga un resultado de prueba positivo. La especificidad es la probabilidad de que una persona sin cáncer tenga un resultado de prueba negativo. El VPP es la posibilidad de que una persona con un resultado positivo de una prueba tenga cáncer. El VPN es la probabilidad de que una persona con un resultado negativo de una prueba no tenga cáncer. El VPP y, en menor medida, el VPN están afectados por la prevalencia de la enfermedad en la población sometida a exámenes de detección. Para una sensibilidad y especificidad dadas, cuanto mayor es la prevalencia, mayor es el PPV.

Poblaciones con riesgo alto

Se sabe que algunas personas tienen un riesgo alto de cáncer; por ejemplo, aquellos con antecedentes personales o antecedentes familiares sólidos de cáncer (en dos o más parientes directos). De modo creciente, a medida que se encontró que las mutaciones genéticas y los polimorfismos guardan relación con cánceres específicos, las personas con riesgo alto se identificarán mediante pruebas genéticas. El tipo, la periodicidad y el comienzo de la detección en poblaciones de riesgo alto para la mayoría de los cánceres reflejan el juicio de los profesionales más que los datos probatorios obtenidos en estudios científicos. El juicio de los médicos es necesario en tales circunstancias para determinar la aplicación más pertinente de los métodos de detección disponibles. La prudencia indica mayor vigilancia en las poblaciones de riesgo más alto. Como mínimo, esto significa que se identifica a la persona de riesgo alto, se la asesora adecuadamente y se la somete sistemáticamente a esos procedimientos de detección que mostraron ser beneficiosos para la población general.

Recidiva del cáncer

Para mayor información sobre la recidiva del cáncer, consultar los sumarios del PDQ sobreTratamiento del cáncer en adultos.

Mejores desenlaces

Para prácticamente todos los cánceres, las opciones de tratamiento y la supervivencia se relacionan con el estadio, que por lo general se caracteriza por el grado de extensión anatómica de la enfermedad. Sobre esta base, se asume que la detección temprana del cáncer en un estadio temprano puede permitir mejores desenlaces. En la década de 1940, se creó una estadificación generalizada de enfermedades localizadas, regionales y a distancia para reflejar las tendencias a largo plazo, la cual aún es útil. En el sistema más detallado de TNM, modificado periódicamente, también se clasifican el tamaño del (T)umor, el estado de los ga(N)glios linfáticos y el estado de las (M)etástasis a distancia. Estos elementos se agrupan en los estadios 0, I, II, III y IV, conforme a su relación con la supervivencia. En términos generales, los tumores malignos primarios más grandes tienen una incidencia más alta de metástasis en los ganglios linfáticos regionales y en sitios distantes. El estadio tiene un efecto tan profundo en el desenlace que todos los ensayos de tratamientos aleatorizados exigen la comparación de estadios similares para evaluar las diferencias en el desenlace. Los cambios en el estadio también pueden augurar mejora en la supervivencia y disminución de la mortalidad, si bien el cambio por sí solo no establece beneficios.
Las características celulares biológicas del cáncer, como el grado, la sensibilidad hormonal y la sobreexpresión genética se reconocen como factores pronóstico importantes de los comportamientos del cáncer. Por ejemplo, el cáncer de grado alto puede ser de crecimiento rápido y metastatizar rápidamente, de forma independiente del estadio en el momento del diagnóstico. En consecuencia, la detección de estos cánceres cuando son pequeños puede no afectar el desenlace. Los ensayos controlados aleatorizados son más definitivos para determinar los beneficios de los exámenes de detección.

Patrones observados en los estadios del cáncer en el momento del diagnóstico

El Surveillance, Epidemiology, and End Results (SEER) Program del Instituto Nacional del Cáncer recopila datos sobre la incidencia del cáncer de 11 áreas geográficas, que cubren aproximadamente a 14 % de la población de los Estados Unidos. Estos datos de larga duración (de 1973 al presente) basados en poblaciones, son un recurso singular e importante para verificar la supervivencia en cada estadio.

Interpretación de los cambios en la supervivencia relativa con el transcurso del tiempo

Sin embargo, los aumentos en la supervivencia con el transcurso del tiempo son difíciles de interpretar, incluso cuando se basan en datos de registros de tumores, como el SEER, que incluyen todos los casos en una población determinada. Pueden reflejar los beneficios de la detección temprana o la mejora en el tratamiento, pero también pueden resultar del sesgo de anticipación diagnóstica y el sobrediagnóstico, que se presentan comúnmente con la detección.
El sesgo de anticipación diagnóstica resultará en un cálculo de supervivencia más prolongada de las personas con cánceres identificados mediante exámenes de detección porque el tiempo que precede el diagnóstico clínico del cáncer se incluye en el cálculo de la supervivencia.
El sobrediagnóstico puede resultar de la identificación de cánceres que nunca se habrían manifestado clínicamente. Por definición, estos cánceres tienen un buen pronóstico. Por ejemplo, en series de autopsias se mostró un alto porcentaje de carcinomas de próstata incipientes ocultos en hombres de edad avanzada que murieron por causas no relacionadas con el cáncer de próstata.[20] El descubrimiento de estos cánceres mediante detección sistemática podría aumentar el número de casos y dar la apariencia de un cambio de estadio y aumentos en las tasas de supervivencia o curación, sin reducir necesariamente la mortalidad. En un análisis de los datos notificados por el programa SEER entre 1950 y 1996, se encontró que los cambios con el tiempo en las tasas relativas de supervivencia a 5 años para 20 cánceres principales no se relacionaron esencialmente con las tendencias en las tasas de mortalidad para esos cánceres durante el mismo período.[21] Los autores indican que los cambios en las tasas de supervivencia a 5 años se deben en gran medida al diagnóstico más temprano y a la detección de casos asintomáticos que tal vez nunca habrían surgido clínicamente. Llegan a la conclusión que las inferencias sobre la eficacia del diagnóstico o el tratamiento tempranos no deben trazarse a partir de cambios temporales en las tasas de supervivencia a 5 años, sino que se deben basar en cambios en las tasas de mortalidad. De este modo, los cambios en las tasas de supervivencia a 5 años o los cambios de estadio no son medidas apropiadas de la eficacia del examen de detección para la enfermedad en estadio temprano. Las reducciones en las tasas de incidencia para los tumores en estadio tardío representan una mejor medida del progreso debido a la detección que las tendencias de supervivencia a 5 años, aunque tales pruebas sean menos convincentes que las reducciones en mortalidad.

Diseño de los estudios

Se pueden emplear diversos diseños de estudios para respaldar un sumario dado. El diseño más sólido se obtendrá de un ensayo controlado aleatorizado. Sin embargo, no siempre es práctico realizar este tipo de ensayo para abordar cada pregunta en torno al campo de la detección sistemática. En cada afirmación sobre datos probatorios en los sumarios, se menciona la solidez relacionada con los diseños de los estudios. Hay cinco diseños de estudios que se usan generalmente para juzgar los datos probatorios. En orden de solidez del diseño, los cinco niveles son los siguientes:
  1. Datos probatorios obtenidos en ensayos controlados aleatorizados.
  2. Datos probatorios obtenidos en ensayos controlados no aleatorizados.
  3. Datos probatorios obtenidos en estudios de cohorte o de casos y testigos.
  4. Datos probatorios obtenidos en estudios ecológicos y descriptivos (por ejemplo, estudios de patrones internacionales, series temporales).
  5. Opiniones de autoridades respetadas por su experiencia clínica, estudios descriptivos o informes de comités de expertos.
Los ensayos experimentales se diseñan para corregir o eliminar los sesgos de selección, de anticipación diagnóstica, duración, voluntario sano y otros sesgos cuando se prueba de manera prospectiva un procedimiento de detección con el propósito de determinar su efecto en el desenlace de salud. El índice más alto de datos probatorios y el mayor beneficio de la detección es la reducción de la mortalidad en un ensayo controlado aleatorizado. En la mayoría de los centros, no se dispone de datos probatorios. En teoría, es posible realizar ensayos aleatorizados para gran parte de las intervenciones pero el tamaño de la muestra necesario, el gasto y la duración de tales ensayos para la mayoría de los cánceres, con frecuencia, restan practicidad a esta estrategia. En consecuencia, a medida se suelen usar los datos probatorios obtenidos por otros métodos.
En ciertos casos, otra opción preliminar para no usar la reducción de la mortalidad en la evaluación de una nueva modalidad de detección podría ser una comparación relativamente de corto plazo (por ejemplo, varios años) de los intervalos de las tasas de cáncer observados en un ensayo aleatorizado en el que se compara la prueba nueva con la modalidad de detección "estándar". Si la nueva prueba de detección tiene el potencial de mejorar la mortalidad por la enfermedad específica, las aplicaciones repetidas en un período de tiempo discreto resultarán en una menor proporción de pacientes en el grupo de intervención que se presentan un cáncer sintomático (del tipo objeto de la detección) entre detecciones negativas. Es decir, con la detección temprana y el tratamiento resultante, el nuevo examen de detección evita que un porcentaje más alto de lesiones asintomáticas de importancia clínica avancen hasta tornarse cáncer manifiesto. A diferencia de las comparaciones transversales de sensibilidad en las que los participantes de los estudios se someten a modalidades nuevas y antiguas de detección, este diseño de ensayo permite calcular el grado de sobrediagnóstico generado por un examen de detección. Esta comparación se debe realizar en el contexto de un ensayo controlado aleatorizado.[22]
Los estudios de casos y controles y los estudios de cohortes ofrecen datos probatorios indirectos de la eficacia de la detección sistemática, pero es difícil eliminar la contribución del sesgo de selección y los sesgos de voluntarios sanos evidentes en estos estudios.
Los estudios ecológicos pueden demostrar una relación entre el uso de exámenes de detección y un cambio en el estadio del cáncer que puede proporcionar datos probatorios del valor de la detección. Estos datos probatorios son especialmente convincentes de la eficacia de la detección del cáncer de cuello uterino.[23] En este contexto se utilizó la correlación ecológica de la mortalidad y la intensidad de la detección. Dichos estudios no prueban un efecto en la reducción de la mortalidad y pueden sustancialmente incluir un sesgo que invalida las inferencias de estudios no experimentales o generar resultados confusos.[24-29]
Los estudios descriptivos no controlados basados en la experiencia de médicos individuales, hospitales y registros no poblacionales pueden generar cierta información sobre los exámenes de detección. Las características del desempeño de varias pruebas de detección, como sensibilidad, especificidad y los VPP, por lo general, se notifican primero en estos estudios descriptivos. Los primeros datos probatorios de que la detección puede ser exitosa es un aumento en la incidencia de cánceres tempranos y la reducción de la incidencia de cánceres metastásicos en estadio tardío (cambio de estadio); más adelante, es posible que se presente una reducción del número de muertes. Estos estudios descriptivos no establecen la eficacia debido a la ausencia de un grupo de control apropiado.
En el sumario de PDQ sobre Grados de comprobación científica de los estudios de investigación sobre detección y prevención del cáncer se puede encontrar una descripción más detallada de la manera en que Consejo Editorial sobre Exámenes de Detección y Prevención del Cáncer del PDQ clasifica los datos probatorios generales relacionados con los beneficios y perjuicios de las pruebas de detección.

Criterios de valoración de la mortalidad por enfermedad específica y por todas las causas

La mortalidad por enfermedad específica ha sido el criterio de valoración aceptado de manera más generalizada en los estudios o ensayos clínicos aleatorizados de detección del cáncer; sin embargo, la validez de este criterio de valoración se basa en las premisas fundamentales que la causa de la muerte puede determinarse con precisión y que la detección y el tratamiento subsiguiente tienen efectos insignificantes sobre otras causas de muerte. En las últimas revisiones de los ensayos clínicos aleatorizados de detección del cáncer, se indica que la clasificación errónea de la causa de muerte ha sido un problema importante que exageró la eficacia (o subestimó los perjuicios) de los exámenes de detección.[30-32] A diferencia de la mortalidad por enfermedad específica, la mortalidad por todas las causas depende solamente del establecimiento preciso de las defunciones y del momento en el que ocurren y, en consecuencia, no está afectada por la clasificación errónea de la causa de muerte. Sin embargo, una limitación importante del criterio de valoración de la mortalidad por todas las causas es que es improbable que revele un efecto estadísticamente significativo de la detección sistemática del cáncer porque esta intervención habitualmente se dirige a una enfermedad que causa solo una pequeña proporción de todas las muertes. De toso modos, se debe considerar la mortalidad por todas las causas junto con la mortalidad por enfermedad específica para reducir la posibilidad de que quede oculto un perjuicio (o beneficio) importante de la detección por la clasificación errónea de la causa de muerte.
Una pregunta importante, que se puede abordar mediante la investigación de ambos criterios de valoración, es si la detección realmente salva vidas. Se llevó a cabo una revisión sistemática de los metanálisis y los ensayos aleatorizados para enfermedades en la que la muerte es un desenlace común, incluso varios cánceres, para determinar si la detección reduce la mortalidad por todas las causas. La mamografía para el cáncer de mama, y la sigmoidoscopia y la prueba de sangre de la materia fecal para el cáncer colorrectal fueron los únicos exámenes de detección que dieron lugar a reducciones de la mortalidad por enfermedad específica; sin embargo, no hubo ninguna prueba que llevara a la reducción de la mortalidad por todas las causas.[33]

Mediciones del riesgo

En la investigación del cáncer se utilizan varias medidas de riesgo. El riesgo absoluto (o tasa absoluta) mide el riesgo o la tasa de cáncer real en una población o subgrupo (por ejemplo, la población de los Estados Unidos, o los estadounidenses de raza blanca o los estadounidenses de origen africano). Por ejemplo, el SEER Program notifica riesgo y tasa de cáncer en zonas geográficas específicas de los Estados Unidos.
Las tasas se suelen ajustar (por ejemplo, tasas ajustadas por edad) para permitir comparar con mayor precisión las tasas con el transcurso del tiempo o entre grupos. El propósito del ajuste es asemejar más a los grupos con respecto a características importantes que pueden afectar a las conclusiones. Por ejemplo, cuando el SEER Program compara tasas de cáncer con el transcurso del tiempo en los Estados Unidos, las tasas se ajustan de acuerdo con una distribución por edad. En caso contrario, las tasas de cáncer parecerían aumentar con el transcurso del tiempo simplemente porque la población estadounidense envejece y el riesgo de cáncer es más alto en grupos de edad más avanzada.
El RR compara el riesgo de presentar cáncer entre aquellas personas que tienen una característica o exposición particular con aquellos que no la tienen. El RR se expresa como un cociente de riesgos o tasas; oscila entre el infinito y el inverso del infinito (es decir, cero). Si el RR es mayor que 1, la exposición o la característica se relaciona con un riesgo más alto de cáncer; si el riesgo relativo es igual a 1, la exposición y el cáncer no guardan relación alguna entre sí; si el riesgo relativo es inferior a 1, la exposición se relaciona con un riesgo más bajo de cáncer (es decir, la exposición es protectora). El riesgo relativo se suele usar en los ensayos clínicos de prevención y detección del cáncer para calcular la reducción del riesgo de cáncer o el riesgo de muerte, respectivamente.
La oportunidad relativa (OR) se suele usar como un cálculo del RR. También indica si hay una relación entre una exposición o característica y el cáncer. Compara las probabilidades de una exposición o característica en los casos de cáncer con las probabilidades de un grupo comparativo sin cáncer. Si bien no se comprende tan intuitivamente como tasas o riesgo, la OR se usa porque estadísticamente es más válida en algunos entornos cuando otras medidas del riesgo no son válidas. Para los episodios o las enfermedades relativamente poco comunes como un diagnóstico de cáncer, se puede interpretar como un RR; sin embargo, se torna un cálculo cada vez más impreciso del RR a medida que el riesgo absoluto subyacente de la enfermedad en la población estudiada se eleva por encima de 10 %. Las OR se usan del riesgo absoluto subyacente de enfermedad en la población estudiada. Las oportunidades relativas se usan normalmente en estudios de casos y controles para identificar los posibles factores de riesgo o factores protectores del cáncer.
La diferencia de riesgo o tasa (o exceso de riesgo) compara el riesgo la tasa real de cáncer entre por lo menos dos grupos de personas, según una característica o exposición importantes, mediante la sustracción de los riesgos o las tasas entre sí (por ejemplo, al sustraer las tasas de cáncer de pulmón entre los no fumadores de las tasas de los fumadores de cigarrillos se calcula el riesgo excesivo de cáncer de pulmón debido al tabaquismo). Esto se puede usar en el campo de la salud pública para calcular el número de casos de cáncer que se podrían evitar si se redujese o eliminara una exposición en la población.
El riesgo atribuible a la población mide la proporción de cánceres que se pueden atribuir a una exposición o característica particular. Combina la información sobre el RR de cáncer relacionado con una exposición particular con la prevalencia de esa exposición en la población, y calcula la proporción de casos de cáncer en una población que se podrían evitar con la reducción o la eliminación de una exposición.
El número necesario para la detección calcula el número de personas que deben participar en un programa de detección para prevenir una muerte en un intervalo de tiempo determinado.
Los años de vida ganados en promedio calcula el número de años que una intervención salva, por término medio, para una persona que se somete a la intervención. Esto refleja la reducción de la mortalidad y la extensión de vida (o las muertes prematuras que se evitan).
Bibliografía
  1. American Cancer Society: Cancer Facts and Figures 2016. Atlanta, Ga: American Cancer Society, 2016. Available online. Last accessed July 11, 2016.
  2. Kramer BS: The science of early detection. Urol Oncol 22 (4): 344-7, 2004 Jul-Aug. [PUBMED Abstract]
  3. Nishizawa S, Kojima S, Teramukai S, et al.: Prospective evaluation of whole-body cancer screening with multiple modalities including [18F]fluorodeoxyglucose positron emission tomography in a healthy population: a preliminary report. J Clin Oncol 27 (11): 1767-73, 2009. [PUBMED Abstract]
  4. Croswell JM, Kramer BS, Kreimer AR, et al.: Cumulative incidence of false-positive results in repeated, multimodal cancer screening. Ann Fam Med 7 (3): 212-22, 2009 May-Jun. [PUBMED Abstract]
  5. Sima CS, Panageas KS, Schrag D: Cancer screening among patients with advanced cancer. JAMA 304 (14): 1584-91, 2010. [PUBMED Abstract]
  6. Lu D, Fall K, Sparén P, et al.: Suicide and suicide attempt after a cancer diagnosis among young individuals. Ann Oncol 24 (12): 3112-7, 2013. [PUBMED Abstract]
  7. Baade PD, Fritschi L, Eakin EG: Non-cancer mortality among people diagnosed with cancer (Australia). Cancer Causes Control 17 (3): 287-97, 2006. [PUBMED Abstract]
  8. Burda BU, Norris SL, Holmer HK, et al.: Quality varies across clinical practice guidelines for mammography screening in women aged 40-49 years as assessed by AGREE and AMSTAR instruments. J Clin Epidemiol 64 (9): 968-76, 2011. [PUBMED Abstract]
  9. Hoffman RM, Lewis CL, Pignone MP, et al.: Decision-making processes for breast, colorectal, and prostate cancer screening: the DECISIONS survey. Med Decis Making 30 (5 Suppl): 53S-64S, 2010 Sep-Oct. [PUBMED Abstract]
  10. O'Connor AM, Llewellyn-Thomas HA, Flood AB: Modifying unwarranted variations in health care: shared decision making using patient decision aids. Health Aff (Millwood) Suppl (Variation): VAR63-72, 2004. [PUBMED Abstract]
  11. Charles C, Gafni A, Whelan T: Shared decision-making in the medical encounter: what does it mean? (or it takes at least two to tango). Soc Sci Med 44 (5): 681-92, 1997. [PUBMED Abstract]
  12. Coulter A, Collins A: Making Shared Decision-Making a Reality: No Decision About Me, Without Me. London, UK: The King's Fund, 2011. Also available online. Last accessed October 6, 2016.
  13. Elwyn G, O'Connor A, Stacey D, et al.: Developing a quality criteria framework for patient decision aids: online international Delphi consensus process. BMJ 333 (7565): 417, 2006. [PUBMED Abstract]
  14. Stacey D, Hawker G, Dervin G, et al.: Decision aid for patients considering total knee arthroplasty with preference report for surgeons: a pilot randomized controlled trial. BMC Musculoskelet Disord 15: 54, 2014. [PUBMED Abstract]
  15. Hersch J, Barratt A, Jansen J, et al.: Use of a decision aid including information on overdetection to support informed choice about breast cancer screening: a randomised controlled trial. Lancet 385 (9978): 1642-52, 2015. [PUBMED Abstract]
  16. Yamamoto K, Hayashi Y, Hanada R, et al.: Mass screening and age-specific incidence of neuroblastoma in Saitama Prefecture, Japan. J Clin Oncol 13 (8): 2033-8, 1995. [PUBMED Abstract]
  17. Bessho F: Effects of mass screening on age-specific incidence of neuroblastoma. Int J Cancer 67 (4): 520-2, 1996. [PUBMED Abstract]
  18. Woods WG, Tuchman M, Robison LL, et al.: A population-based study of the usefulness of screening for neuroblastoma. Lancet 348 (9043): 1682-7, 1996 Dec 21-28. [PUBMED Abstract]
  19. Soderstrom L, Woods WG, Bernstein M, et al.: Health and economic benefits of well-designed evaluations: some lessons from evaluating neuroblastoma screening. J Natl Cancer Inst 97 (15): 1118-24, 2005. [PUBMED Abstract]
  20. Woolf SH: Screening for prostate cancer with prostate-specific antigen. An examination of the evidence. N Engl J Med 333 (21): 1401-5, 1995. [PUBMED Abstract]
  21. Welch HG, Schwartz LM, Woloshin S: Are increasing 5-year survival rates evidence of success against cancer? JAMA 283 (22): 2975-8, 2000. [PUBMED Abstract]
  22. Irwig L, Houssami N, Armstrong B, et al.: Evaluating new screening tests for breast cancer. BMJ 332 (7543): 678-9, 2006. [PUBMED Abstract]
  23. Hakama M, Miller AB, Day NE, eds.: Screening for cancer of the uterine cervix. Lyon, France: International Agency for Research on Cancer, 1986.
  24. Connor RJ, Prorok PC, Weed DL: The case-control design and the assessment of the efficacy of cancer screening. J Clin Epidemiol 44 (11): 1215-21, 1991. [PUBMED Abstract]
  25. Friedman DR, Dubin N: Case-control evaluation of breast cancer screening efficacy. Am J Epidemiol 133 (10): 974-84, 1991. [PUBMED Abstract]
  26. Janzon L, Andersson I: The Malmo mammographic screening trial. In: Miller AB, Chamberlain J, Day NE, et al., eds.: Cancer Screening. Cambridge: Cambridge University Press, 1991, pp 37-44.
  27. Moss SM: Case-control studies of screening. Int J Epidemiol 20 (1): 1-6, 1991. [PUBMED Abstract]
  28. Weiss NS, Lazovich D: Case-control studies of screening efficacy: the use of persons newly diagnosed with cancer who later sustain an unfavorable outcome. Am J Epidemiol 143 (4): 319-22, 1996. [PUBMED Abstract]
  29. Suzuki KJ, Nakaji S, Tokunaga S, et al.: Confounding by dietary factors in case-control studies on the efficacy of cancer screening in Japan. Eur J Epidemiol 20 (1): 73-8, 2005. [PUBMED Abstract]
  30. Black WC: Overdiagnosis: An underrecognized cause of confusion and harm in cancer screening. J Natl Cancer Inst 92 (16): 1280-2, 2000. [PUBMED Abstract]
  31. Olsen O, Gøtzsche PC: Screening for breast cancer with mammography. Cochrane Database Syst Rev (4): CD001877, 2001. [PUBMED Abstract]
  32. Black WC, Haggstrom DA, Welch HG: All-cause mortality in randomized trials of cancer screening. J Natl Cancer Inst 94 (3): 167-73, 2002. [PUBMED Abstract]
  33. Saquib N, Saquib J, Ioannidis JP: Does screening for disease save lives in asymptomatic adults? Systematic review of meta-analyses and randomized trials. Int J Epidemiol 44 (1): 264-77, 2015. [PUBMED Abstract]
  • Actualización: 21 de julio de 2016






Cancer Screening Overview (PDQ®)—Health Professional Version - National Cancer Institute





National Cancer Institute

Cancer Screening Overview (PDQ®)–Health Professional Version



SECTIONS





Cancer Screening

Potential Benefits and Harms

In 2016, an estimated 1,685,210 people in the United States will be diagnosed with cancer, and 595,690 will die of cancer.[1] Estimates of the premature deaths that could have been avoided through screening vary from 3% to 35%, depending on a variety of assumptions. Beyond the potential for avoiding death, screening may reduce cancer morbidity since treatment for earlier-stage cancers is often less aggressive than that for more advanced-stage cancers.
Several potential harms must be considered against any potential benefit of screening for cancer.[2] Although most cancer screening tests are noninvasive or minimally invasive, some involve small risks of serious complications that may be immediate (e.g., perforation with colonoscopy) or delayed (e.g., potential carcinogenesis from radiation). Another harm is the false-positive test result, which may lead to anxiety and unnecessary invasive diagnostic procedures. These invasive diagnostic procedures carry the risk of serious complications. A less familiar harm is overdiagnosis, i.e., the diagnosis of a condition that would not have become clinically important had it not been detected by screening. This harm is becoming more common as screening tests become more sensitive at detecting tiny tumors. Finally, a false-negative screening test may falsely reassure an individual with subsequent clinical signs or symptoms of cancer and thereby actually delay diagnosis and effective treatment.
A 2009 publication of preliminary results of a cancer screening project in Japan using multiple whole-body screening technologies illustrates clearly the problems of false-positive screening results and potential overdiagnosis.[3]
The project enrolled 1,217 healthy volunteers, aged 35 years and older between August 2003 and July 2004. The volunteers were employees of Hamamatsu Photonics K.K. and affiliated companies in Japan. Participants were enrolled in a company-wide health insurance program and most received mandatory annual employee’s health check-ups for many years, including chest x-ray, fecal occult blood (FOB) testing, upper gastrointestinal series, and mammography screening. Twenty applicants with a prior history of cancer were excluded, leaving 1,197 participants in the evaluation. All enrollees could be considered at low risk for screen-detected cancer.[3]
All participants were offered annual whole body screening by fluorodeoxyglucose positron emission tomography, chest and abdominal computed tomography (CT), brain and pelvic magnetic resonance imaging (MRI), analyses of serum tumor markers including carcinoembryonic antigen, cancer antigen 19-9 (CA19-9), squamous cell carcinoma antigen, prostate specific antigen for men older than aged 50 years, cancer antigen 125 (CA-125) for women, and FOB testing.
Specific clinically relevant classifications were standardized for all test results and imaging tests received three independent readings with consensus resolution (for details refer to [3]). A screen was classified positive if any test was suggestive of malignancy, and in these cases, the subject was referred to a local hospital for further testing or retesting at the screening center. Interval cancer events were ascertained at subsequent screenings or by interview.[3]
Twenty-two primary cancers were pathologically confirmed, including 18 at the initial screen and one in the second round. The multitest whole body testing overall sensitivity was reported as 81.8% with a specificity of 70.6% (false-positive rate 29.4%) when the results were considered suggestive of malignancy or malignancy could not be definitively ruled out and 68.2% versus 87.4%, respectively, for the more restricted screen classification suggestive of malignancy only.
The incidence of cancers found on the initial screen exceeded the estimated age-matched annual incidence of cancer in Japan by three to four times. Several cancers found on screening were known to be indolent and might be harmless for a long period without affecting cancer mortality.[3]
The possible harms of repeated multimodal cancer screening programs were also assessed using data from the intervention arm of the randomized, controlled Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. A total of 68,436 participants received screening for three cancers, depending on sex, using prostate-specific antigen (PSA), digital rectal exam, transvaginal ultrasound, serum CA-125, chest x-ray, and/or flexible sigmoidoscopy. The study found that after four screening tests (which occurred within a 1-day period in the trial), the cumulative probability of an individual receiving at least one false-positive result was 37% for men and 26% for women. After 14 tests (or 3 years of screening), the probability rose to 60% for men and 49% for women. The cumulative probability of undergoing an invasive procedure as a direct result of a false-positive exam was 29% for men and 22% for women after 14 tests.[4]
The harms of screening are of particular concern in the case of overdiagnosis, as the individual cannot, by definition, reap any potential benefit of screening, but may experience the associated adverse effects, including those of unnecessary treatments. There are two forms of overdiagnosis: 1) the detection of a lesion with essentially no malignant potential (sometimes called “pseudodisease”); and 2) the detection of a lesion that is slow-growing enough that the individual will go on to die of a competing cause of death first. The use of screening tests in individuals with limited life expectancies can therefore be an important cause of overdiagnosis. Studies of current U.S. practice patterns have demonstrated considerable utilization of cancer screening tests in situations where the likelihood of overdiagnosis is high, and benefit very low. For example, investigators linked data from the Surveillance, Epidemiology, and End Results (SEER) cancer registry to Medicare claims in order to evaluate the use of routine cancer screening in persons aged 65 years and older with a known advanced cancer diagnosis (including stage IIIB–IV lung cancer, stage IV colorectal cancer, stage IV gastroesophageal cancer, stage IV breast cancer, and advanced-stage pancreatic cancer). They found 9% of women with established advanced cancer diagnoses received routine screening mammographies and 6% received routine Pap smears; 15% of men with established advanced cancer diagnoses still received routine PSA screening. The strongest individual predictor of routine screening in the setting of advanced cancer was a history of recent screening prior to diagnosis.[5]
There is an association between cancer diagnosis and suicide behavior (either completed or attempted) in the first year after diagnosis. This association has been seen in both adults and young individuals, with relative risk (RR) ranging from 1.6 to 2.0.[6,7]
In developing the cancer screening summaries, the PDQ Screening and Prevention Editorial Board uses the following definitions:
  • Screening is a means of detecting disease early in asymptomatic people.
  • Positive results of examinations, tests, or procedures used in screening are usually not diagnostic but identify persons at increased risk for the presence of cancer who warrant further evaluation.
  • Diagnosis is confirmation of disease by biopsy or tissue examination in the work-up following positive screening tests. (Following a positive screening result, cancer can often be ruled out by procedures other than biopsy or tissue examination.)
The purpose of this summary is to present an explicit evidence-based approach used in the development of the screening summaries. In reaching conclusions, evidence on the balance of risks and benefits is weighed. Cost and cost-effectiveness, however, is not taken into account. Assignment of levels of evidence associated with such screening tests is also discussed.
By design, the PDQ does not issue any clinical practice guidelines. Although many public health organizations present guidelines for health care and screening activities, the quality of these guidelines vary widely,[8] partly because they are opinion based and rely on systematic reviews of evidence that are of varying quality. The best guidelines as assessed by the Appraisal of Guidelines for Research and Evaluation (AGREE) are those based on the best systematic reviews as evaluated by the Assessment of Multiple Systematic Reviews (AMSTAR).

Informed and Shared Medical Decision Making

Guidelines for cancer screening increasingly mention the importance of individuals making informed decisions about participating in screening and sharing in decision making. Unbiased and balanced information about the potential benefits and harms of cancer prevention, screening, and treatment plays an important role in informed decision making by the patient.
In a nationwide survey of informed decision making during patient-provider discussions about colorectal, breast, and prostate cancer screening, patients considered themselves informed but often were not knowledgeable about the risks and benefits of screening. Patients reported that they were usually not asked about their preferences for cancer screening; and although more than 90% of the discussions addressed the pros of screening, 30% or fewer addressed the cons of screening.[9]
For many cancer screening decisions, shared decision making is suggested, whereby the provider helps the patient make an informed, values-based choice from among two or more medically reasonable alternatives.[10,11] This is especially important when screening presents potential harms and limited benefits. There are three components of shared decision making:[12]
  1. The provider shares screening options with evidence-based information about benefits, harms, and uncertainties.
  2. The patient shares preferences with the provider, who helps the patient evaluate these options and preferences and make a decision.
  3. The provider assists with recording and implementing the patient’s preferences.
Patient decision aids can be useful in providing information and helping patients make a decision. They encourage patients to interpret evidence in the context of their own goals and concerns. Decision aids are available in many different formats, including leaflets, booklets, videos, and websites. Some decision aids also include patient stories. Different patients may prefer some formats over others. Most formats encourage patients to make decisions with their physicians. The International Patient Decision Aid Standards (IPDAS) Collaboration has developed a method for evaluating the quality of decision aids.[13]
A Cochrane review of 115 randomized controlled trials of shared decision making supported by decision aids indicated that, in general, decision aids improve patient knowledge about options and risks; reduce decisional conflict related to feeling uninformed or unclear about personal values; and stimulate patients to take more active roles in decision making. In some cases, decisions aids have also been noted to reduce the number of patients choosing major elective invasive surgery over more conservative options, and in fewer patients choosing cancer screening. The effect of using decision aids on the length of consultation varies, ranging from shortening consult time, to no change, to lengthening consult time.[14]
After using a decision aid that included information about breast cancer overdetection, more women made an informed decision about whether they should be screened, and met the threshold for adequate overall knowledge. Compared with controls whose decision aids did not include information about overdetection, fewer women expressed positive attitudes toward screening or intended to be screened in the future.[15] Better-informed individuals may be less likely to choose to participate in cancer screening.

Summary Development

The cancer screening summaries are based on various levels of published scientific evidence and collective clinical experience. The highest level of evidence is taken as mortality reduction in controlled, randomized clinical trials. The results of clinical studies, case-control studies, cohort studies, and other information are also considered in formulating the summaries. In addition, the incidence of cancer, stage distribution, treatment, and mortality rates are considered. The summaries are subject to modification as new evidence becomes available.

The Scientific Basis

At least two requirements must be met for screening to be efficacious:
  1. A test or procedure must be available to detect cancers earlier than if the cancer were detected as a result of the development of symptoms.
  2. Evidence must be available that treatment initiated earlier as a consequence of screening results in an improved outcome.
These requirements are necessary but not sufficient to prove the efficacy of screening, which requires a decrease in cause-specific mortality. For example, only one of these two criteria was met in the case of screening for childhood neuroblastoma by the assessment of urinary catecholamine metabolites. A mass screening program was conducted in Saitama Prefecture, Japan, between 1981 and 1992 for 6-month-old infants.[16] During that 12-year period, the annual incidence of neuroblastoma in children younger than 1 year increased from about 28 per million to 260 per million but without a significant reduction in incidence in children older than 1 year. Because there also was no reduction in mortality for the disease, this experience provided strong evidence of overdiagnosis—diagnosis of some neuroblastomas detectable by screening, which would not have been clinically diagnosed later. Similar experiences have been reported elsewhere in Japan [17] and in the Quebec Neuroblastoma Screening Project (QNSP) in Canada.[18] The history of screening for neuroblastoma also provides a useful illustration of the benefit of undertaking well-designed evaluations of emerging screening technologies before implementing screening programs. Although such studies are very costly, it has been shown that the QNSP itself averted unnecessary morbidity for thousands of children and did so while returning a yield plausibly estimated at a cost savings 64.5 times the investment in the study.[19]

Detection

Direct or assisted visual observation is the most widely available examination for the detection of cancer. It is useful in identifying suspicious lesions in the skin, retina, lip, mouth, larynx, external genitalia, and cervix.
The second most available detection procedure is palpation to detect lumps, nodules, or tumors in the breast, mouth, salivary glands, thyroid, subcutaneous tissues, anus, rectum, prostate, testes, ovaries, and uterus and enlarged lymph nodes in the neck, axilla, or groin.
Internal cancers require procedures and tests such as endoscopy, x-rays, MRI, or ultrasound. Laboratory tests, such as the Pap smear or the FOB test have been employed for detection of specific cancers.
The performance of screening tests is usually measured in terms of sensitivity, specificity, and positive-predictive values (PPV) and negative-predictive values (NPV). Sensitivity is the chance that a person with cancer has a positive test. Specificity is the chance a person without cancer has a negative test. PPV is the chance that a person with a positive test has cancer. NPV is the chance that a person with a negative test does not have cancer. PPV and to a lesser degree, NPV are affected by the prevalence of disease in the screened population. For a given sensitivity and specificity, the higher the prevalence, the higher the PPV.

High-Risk Populations

Some individuals are known to be at high risk for cancer, such as those with a personal history of cancer or a strong family history of cancer (in two or more first-degree relatives); increasingly, as genetic mutations and polymorphisms are found to be associated with specific cancers, high-risk individuals will be identified through genetic testing. The type, periodicity, and commencement of screening in high-risk populations for most cancers reflect the judgment of practitioners rather than evidence from scientifically conducted studies. Physician judgment is needed in such circumstances to determine the most appropriate application of available screening methods. Prudence suggests increased vigilance in the higher-risk populations. At a minimum, this means that the high-risk person is identified, is counseled appropriately, and regularly undergoes those screening procedures that have been shown to be of benefit to the general population.

Cancer Recurrence

Please refer to the PDQ Adult Treatment summaries for information on cancer recurrence.

Improved Outcomes

For nearly all cancers, treatment options and survival are related to stage, which is generally characterized by the anatomic extent of disease. On this basis, it is assumed that early detection of cancer at an earlier stage may yield better outcomes. In the 1940s, a generalized staging classification of localized, regional, and distant disease was developed to show long-term trends, and it is still useful. In the more detailed TNM system, which has been periodically modified, the (T)umor size, the status of the lymph (N)odes, and the status of distant (M)etastases are also categorized. These elements are grouped into stages 0, I, II, III, and IV according to their association with survival. In general, larger primary malignant tumors have a higher incidence of metastasis to regional lymph nodes and to distant sites. Stage has such a profound effect on outcome that all randomized treatment trials require the comparison of similar stages in evaluating differences in outcome. Shifts in stage may also herald improved survival and decreased mortality, though stage shift alone does not establish benefit.
Biologic cellular characteristics of cancer, such as grade, hormone sensitivity, and gene overexpression are recognized as important predictors of cancer behaviors. For example, high-grade cancer may be fast growing and quick to metastasize regardless of stage at the time of diagnosis. Therefore, detection of these cancers when they are small may not affect outcome. Randomized controlled trials are most definitive in determining screening benefits.

Observed Patterns of Cancer Stage at Diagnosis

The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute gathers cancer incidence data from 11 geographic areas, covering approximately 14% of the U.S. population. These population-based data of long duration (1973–present) are a unique and important resource in monitoring stage-related survival.

Interpreting Changes in Relative Survival Over Time

Increases in survival over time, however, even when based on data from tumor registries, such as SEER that include all cases in a given population, are difficult to interpret. They may reflect the benefits of early detection or improved treatment or both, but they may also result from lead-time bias and overdiagnosis, both of which occur commonly with screening.
Lead-time bias will result in longer estimated survival of people with cancers that have been identified through screening because the time preceding the clinical diagnosis of the cancer is included in the calculation of survival.
Overdiagnosis may result from finding cancers that would never have become manifest clinically. By definition, these cancers have a good prognosis. For example, autopsy series have shown a high percentage of occult early prostate carcinomas in elderly men who died of causes unrelated to prostate cancer.[20] The discovery of these cancers through screening could increase the number of cases and give the appearance of stage shift, and of increases in survival or cure rates, without necessarily reducing mortality. An analysis of data reported by the SEER program between 1950 and 1996 found that changes over time in 5-year relative survival rates for 20 major cancers were essentially unrelated to trends in mortality rates for those cancers over the same period.[21] The authors suggest that changes in 5-year survival rates are largely due to earlier diagnosis and to detection of subclinical cases that might never have surfaced clinically. They conclude that inferences about the effectiveness of early diagnosis or treatment should not be drawn from temporal changes in 5-year survival rates, but rather should be based on changes in mortality rates. Thus, changes in 5-year survival rates or stage shifts are not appropriate measures of the effectiveness of screening for early disease. Reductions in incidence rates for late-stage tumors represent a better measure of progress due to screening than 5-year survival trends, although such evidence is less compelling than reductions in mortality.

Study Designs

Findings from studies carried out using various study designs may be available to support a given summary. The strongest design is the randomized controlled trial. It is, however, not always practical to conduct such a trial to address every question surrounding the field of screening. For each summary of evidence statement, the associated strength of study designs are listed. There are five study designs that are generally used in judging the evidence. In order of strength of design, the five levels are as follows:
  1. Evidence obtained from randomized controlled trials.
  2. Evidence obtained from nonrandomized controlled trials.
  3. Evidence obtained from cohort or case-control studies.
  4. Evidence obtained from ecologic and descriptive studies (e.g., international patterns studies, time series).
  5. Opinions of respected authorities based on clinical experience, descriptive studies, or reports of expert committees.
Experimental trials are designed to correct for or eliminate selection, lead-time, length, healthy volunteer, and other biases when prospectively testing a detection procedure to determine its effect on health outcome. The highest level of evidence and greatest benefit from screening is mortality reduction in a randomized controlled trial. For most sites, such evidence is not available. Theoretically it is possible to conduct randomized trials for most interventions, but the sample size that is needed, the expense, and the duration of such trials for most cancers, frequently make this approach impractical. Therefore, evidence obtained by other methods is often used.
In certain cases, a preliminary alternative to using mortality reduction to evaluate a new screening modality could be a relatively short-term (e.g., several years) comparison of interval cancer rates observed in a randomized trial comparing the new test and the “standard” screening modality. If the new screening test has the potential to improve disease-specific mortality, repeated applications over a discrete period of time should result in a lower proportion of patients in the intervention arm presenting with symptomatic cancer (of the type screened for) between negative screens. That is, through increased early detection and resulting treatment, the new screening test prevents a higher percentage of clinically important asymptomatic lesions from progressing to overt cancer. Unlike cross-sectional sensitivity comparisons in which study participants receive both new and older screening modalities, this trial design allows for an estimation of the degree of overdiagnosis generated by a screening test. This comparison should take place within the context of a randomized controlled trial.[22]
Case-control and cohort studies provide indirect evidence for the effectiveness of screening, but it is difficult to eliminate the contribution of selection bias and healthy volunteer biases evident in these studies.
Ecological studies can demonstrate association between the use of screening and a stage shift in cancer that can provide indirect evidence of the value of screening. Such evidence is particularly compelling for the effectiveness of screening for cervical cancer.[23] Ecological correlation of mortality and intensity of screening has been used in this context. Such studies do not prove a mortality-reduction effect, and the potential for bias to invalidate inferences from nonexperimental studies or to give misleading results can be substantial.[24-29]
Descriptive uncontrolled studies based on the experience of individual physicians, hospitals, and nonpopulation-based registries may yield some information about screening. The performance characteristics of various detection tests, such as sensitivity, specificity, and PPVs are generally first reported in such descriptive studies. The first evidence that screening may be successful is an increase in the incidence of early cancers and a decreased incidence of late-stage metastatic cancers (stage shift); later, a reduction in deaths may occur. These descriptive studies do not establish efficacy because of the absence of an appropriate control group.
A more detailed description of how the overall evidence regarding benefits and harms of screening tests is graded by the PDQ Screening and Prevention Editorial Board can be found in the PDQ summary on Levels of Evidence for Cancer Screening and Prevention Studies.

Simulation Models

Another approach to formulating data about cancer screening is modeling. Models offer the possibility of generating information about cancer screening in circumstances where empiric evidence does not exist. A number of probabilistic and computer simulation models have been developed to do the following:
  • Analyze trends in cancer detection and compare these trends with those reported in national or regional databases.
  • Investigate the cost-effectiveness of various screening strategies.
  • Attempt to estimate overdiagnosis resulting from screening.
A major effort in this area is simulation modeling from the National Cancer Institute's Cancer Intervention and Surveillance Modeling Network (CISNET) program. Models have been developed to investigate the impact of screening for breast, colorectal, lung, prostate, cervical, and esophageal cancers. Examples include a model for prostate screening, which suggests that a combination of changes in prostate cancer treatment, improvements in disease management after primary therapy, and screening contributed to a drop in prostate cancer mortality.[30] Another example models the benefits and harms of breast cancer screening strategies after eight strategies were investigated that included differences by age for the start of screening (40, 45, or 50 years) and screening intervals (annual, biennial, or hybrid).[31] Additionally, an investigation of the benefits and harms of CT lung cancer screening compared 576 different scenarios with varying eligibility criteria (age, pack-years of smoking, years since quitting), screening intervals (1, 2, or 3 years), and the ages of starting (45, 50, 55, or 60 years) and stopping (75, 80, or 85 years) screening.[32]
A serious caveat with all models is that they are only as good as the assumptions upon which they are based, particularly those assumptions about the unknown natural history of the target disease. Many models are complex, so it is difficult to understand how the components interact and how the results are generated. Further, models often do not appropriately account for lead time and length biases and therefore overestimate screening benefit. In addition, models often produce results that are extrapolations beyond the range of the data input to the models. Thus, caution is necessary in interpreting model findings.

Disease-Specific and All-Cause Mortality Endpoints

Disease-specific mortality has been the most widely accepted endpoint in randomized clinical trials of cancer screening; however, the validity of this endpoint rests on the fundamental assumptions that the cause of death can be accurately determined and that the screening and subsequent treatments have negligible effects on other causes of death. Recent reviews of randomized clinical trials of cancer screening suggest that misclassification in cause of death has been a major problem and that misclassification has led to an overestimation of the effectiveness (or an underestimation of the harms) of screening.[33-35] In contrast to disease-specific mortality, all-cause mortality depends only on an accurate ascertainment of deaths and when they occur and therefore is not affected by misclassification in cause of death. One major limitation of the all-cause mortality endpoint; however, is that it is unlikely to reveal a statistically significant effect of cancer screening because this intervention is usually targeted to a disease that causes only a small proportion of all deaths. Nevertheless, all-cause mortality should be considered in conjunction with disease-specific mortality to reduce the possibility that a major harm (or benefit) from screening is hidden by misclassification in cause of death.
An important question, which can be addressed by investigating both endpoints, is whether screening actually saves lives. A systematic review of meta-analyses and randomized trials was performed for diseases in which mortality is a common outcome, including several cancers, to determine whether screening reduced all-cause mortality. Mammography for breast cancer and sigmoidoscopy and fecal occult blood testing for colorectal cancer were the only cancer screening interventions that led to reductions in disease-specific mortality, but there was no test that led to a reduction in all-cause mortality.[36]

Measures of Risk

Several measures of risk are used in cancer research. Absolute risk or absolute rate measures the actual cancer risk or rate in a population or subgroup (e.g., U.S. population, or whites or African Americans). For example, the SEER Program reports risk and rate of cancer in specific geographic areas of the United States.
Rates are often adjusted (e.g., age-adjusted rates) to allow a more accurate comparison of rates over time or among groups. The purpose of the adjustment is to make the groups more alike with respect to important characteristics that may affect the conclusions. For example, when the SEER Program compares cancer rates over time in the United States, the rates are adjusted to one age distribution. If this were not done, cancer rates would seem to increase over time simply because the U.S. population is getting older and the risk of cancer is higher in older age groups.
RR compares the risk of developing cancer among those who have a particular characteristic or exposure with those who do not. RR is expressed as a ratio of risks or rates; it ranges from infinity to the inverse of infinity (i.e., zero). If the RR is greater than one, the exposure or characteristic is associated with a higher cancer risk; if the RR is one, the exposure and cancer are not associated with one another; if the RR is less than one, the exposure is associated with a lower cancer risk (i.e., the exposure is protective). RR is often used in clinical trials of cancer prevention and screening to estimate the reduction in cancer risk or risk of death, respectively.
An odds ratio (OR) is often used as an estimate of the RR. It, too, indicates whether there is an association between an exposure or characteristic and cancer. It compares the odds of an exposure or characteristic among cancer cases with the odds among a comparison group without cancer. Although not as intuitively understood as rates or risk, OR is used because it is statistically more valid in some settings when other measures of risk are not valid. For relatively uncommon events/diseases such as a cancer diagnosis, it can be interpreted like a RR is interpreted; however, it becomes a progressively inaccurate estimate of the RR as the underlying absolute risk of disease in the population under study rises above 10%. ORs are typically used in case-control studies to identify potential risk factors or protective factors for cancer.
Risk or rate difference (or excess risk) compares the actual cancer risk or rate among at least two groups of people, based on an important characteristic or exposure, by subtracting the risks or rates from one another (e.g., subtracting lung cancer rates among nonsmokers from that of cigarette smokers estimates the excess risk of lung cancer due to smoking). This can be used in public health to estimate the number of cancer cases that could be avoided if an exposure were reduced or eliminated in the population.
Population-attributable risk measures the proportion of cancers that can be attributed to a particular exposure or characteristic. It combines information about the RR of cancer associated with a particular exposure and the prevalence of that exposure in the population, and estimates the proportion of cancer cases in a population that could be avoided if an exposure were reduced or eliminated.
Number needed to screen estimates the number of people that must participate in a screening program for one death to be prevented over a defined time interval.
Average life-years saved estimates the number of years that an intervention saves, on average, for an individual who receives the intervention. This reflects mortality reduction and life extension (or avoidance of premature deaths).
References
  1. American Cancer Society: Cancer Facts and Figures 2016. Atlanta, Ga: American Cancer Society, 2016. Available online. Last accessed July 11, 2016.
  2. Kramer BS: The science of early detection. Urol Oncol 22 (4): 344-7, 2004 Jul-Aug. [PUBMED Abstract]
  3. Nishizawa S, Kojima S, Teramukai S, et al.: Prospective evaluation of whole-body cancer screening with multiple modalities including [18F]fluorodeoxyglucose positron emission tomography in a healthy population: a preliminary report. J Clin Oncol 27 (11): 1767-73, 2009. [PUBMED Abstract]
  4. Croswell JM, Kramer BS, Kreimer AR, et al.: Cumulative incidence of false-positive results in repeated, multimodal cancer screening. Ann Fam Med 7 (3): 212-22, 2009 May-Jun. [PUBMED Abstract]
  5. Sima CS, Panageas KS, Schrag D: Cancer screening among patients with advanced cancer. JAMA 304 (14): 1584-91, 2010. [PUBMED Abstract]
  6. Lu D, Fall K, Sparén P, et al.: Suicide and suicide attempt after a cancer diagnosis among young individuals. Ann Oncol 24 (12): 3112-7, 2013. [PUBMED Abstract]
  7. Baade PD, Fritschi L, Eakin EG: Non-cancer mortality among people diagnosed with cancer (Australia). Cancer Causes Control 17 (3): 287-97, 2006. [PUBMED Abstract]
  8. Burda BU, Norris SL, Holmer HK, et al.: Quality varies across clinical practice guidelines for mammography screening in women aged 40-49 years as assessed by AGREE and AMSTAR instruments. J Clin Epidemiol 64 (9): 968-76, 2011. [PUBMED Abstract]
  9. Hoffman RM, Lewis CL, Pignone MP, et al.: Decision-making processes for breast, colorectal, and prostate cancer screening: the DECISIONS survey. Med Decis Making 30 (5 Suppl): 53S-64S, 2010 Sep-Oct. [PUBMED Abstract]
  10. O'Connor AM, Llewellyn-Thomas HA, Flood AB: Modifying unwarranted variations in health care: shared decision making using patient decision aids. Health Aff (Millwood) Suppl (Variation): VAR63-72, 2004. [PUBMED Abstract]
  11. Charles C, Gafni A, Whelan T: Shared decision-making in the medical encounter: what does it mean? (or it takes at least two to tango). Soc Sci Med 44 (5): 681-92, 1997. [PUBMED Abstract]
  12. Coulter A, Collins A: Making Shared Decision-Making a Reality: No Decision About Me, Without Me. London, UK: The King's Fund, 2011. Also available online. Last accessed October 6, 2016.
  13. Elwyn G, O'Connor A, Stacey D, et al.: Developing a quality criteria framework for patient decision aids: online international Delphi consensus process. BMJ 333 (7565): 417, 2006. [PUBMED Abstract]
  14. Stacey D, Hawker G, Dervin G, et al.: Decision aid for patients considering total knee arthroplasty with preference report for surgeons: a pilot randomized controlled trial. BMC Musculoskelet Disord 15: 54, 2014. [PUBMED Abstract]
  15. Hersch J, Barratt A, Jansen J, et al.: Use of a decision aid including information on overdetection to support informed choice about breast cancer screening: a randomised controlled trial. Lancet 385 (9978): 1642-52, 2015. [PUBMED Abstract]
  16. Yamamoto K, Hayashi Y, Hanada R, et al.: Mass screening and age-specific incidence of neuroblastoma in Saitama Prefecture, Japan. J Clin Oncol 13 (8): 2033-8, 1995. [PUBMED Abstract]
  17. Bessho F: Effects of mass screening on age-specific incidence of neuroblastoma. Int J Cancer 67 (4): 520-2, 1996. [PUBMED Abstract]
  18. Woods WG, Tuchman M, Robison LL, et al.: A population-based study of the usefulness of screening for neuroblastoma. Lancet 348 (9043): 1682-7, 1996 Dec 21-28. [PUBMED Abstract]
  19. Soderstrom L, Woods WG, Bernstein M, et al.: Health and economic benefits of well-designed evaluations: some lessons from evaluating neuroblastoma screening. J Natl Cancer Inst 97 (15): 1118-24, 2005. [PUBMED Abstract]
  20. Woolf SH: Screening for prostate cancer with prostate-specific antigen. An examination of the evidence. N Engl J Med 333 (21): 1401-5, 1995. [PUBMED Abstract]
  21. Welch HG, Schwartz LM, Woloshin S: Are increasing 5-year survival rates evidence of success against cancer? JAMA 283 (22): 2975-8, 2000. [PUBMED Abstract]
  22. Irwig L, Houssami N, Armstrong B, et al.: Evaluating new screening tests for breast cancer. BMJ 332 (7543): 678-9, 2006. [PUBMED Abstract]
  23. Hakama M, Miller AB, Day NE, eds.: Screening for cancer of the uterine cervix. Lyon, France: International Agency for Research on Cancer, 1986.
  24. Connor RJ, Prorok PC, Weed DL: The case-control design and the assessment of the efficacy of cancer screening. J Clin Epidemiol 44 (11): 1215-21, 1991. [PUBMED Abstract]
  25. Friedman DR, Dubin N: Case-control evaluation of breast cancer screening efficacy. Am J Epidemiol 133 (10): 974-84, 1991. [PUBMED Abstract]
  26. Janzon L, Andersson I: The Malmo mammographic screening trial. In: Miller AB, Chamberlain J, Day NE, et al., eds.: Cancer Screening. Cambridge: Cambridge University Press, 1991, pp 37-44.
  27. Moss SM: Case-control studies of screening. Int J Epidemiol 20 (1): 1-6, 1991. [PUBMED Abstract]
  28. Weiss NS, Lazovich D: Case-control studies of screening efficacy: the use of persons newly diagnosed with cancer who later sustain an unfavorable outcome. Am J Epidemiol 143 (4): 319-22, 1996. [PUBMED Abstract]
  29. Suzuki KJ, Nakaji S, Tokunaga S, et al.: Confounding by dietary factors in case-control studies on the efficacy of cancer screening in Japan. Eur J Epidemiol 20 (1): 73-8, 2005. [PUBMED Abstract]
  30. Etzioni R, Gulati R, Tsodikov A, et al.: The prostate cancer conundrum revisited: treatment changes and prostate cancer mortality declines. Cancer 118 (23): 5955-63, 2012. [PUBMED Abstract]
  31. Mandelblatt JS, Stout NK, Schechter CB, et al.: Collaborative Modeling of the Benefits and Harms Associated With Different U.S. Breast Cancer Screening Strategies. Ann Intern Med 164 (4): 215-25, 2016. [PUBMED Abstract]
  32. de Koning HJ, Meza R, Plevritis SK, et al.: Benefits and harms of computed tomography lung cancer screening strategies: a comparative modeling study for the U.S. Preventive Services Task Force. Ann Intern Med 160 (5): 311-20, 2014. [PUBMED Abstract]
  33. Black WC: Overdiagnosis: An underrecognized cause of confusion and harm in cancer screening. J Natl Cancer Inst 92 (16): 1280-2, 2000. [PUBMED Abstract]
  34. Olsen O, Gøtzsche PC: Screening for breast cancer with mammography. Cochrane Database Syst Rev (4): CD001877, 2001. [PUBMED Abstract]
  35. Black WC, Haggstrom DA, Welch HG: All-cause mortality in randomized trials of cancer screening. J Natl Cancer Inst 94 (3): 167-73, 2002. [PUBMED Abstract]
  36. Saquib N, Saquib J, Ioannidis JP: Does screening for disease save lives in asymptomatic adults? Systematic review of meta-analyses and randomized trials. Int J Epidemiol 44 (1): 264-77, 2015. [PUBMED Abstract]
  • Updated: October 7, 2016

No hay comentarios:

Publicar un comentario